Background: Articular cartilage has limited healing capacity, owing in part to poor vascularity and innervation. Once injured, it cannot be repaired, typically leading to high risk for developing osteoarthritis. Thus, cell-based and/or tissue-engineered approaches have been investigated; however, no approach has yet achieved safety and regenerative repair capacity via a simple implantation procedure.
View Article and Find Full Text PDFBackground: The use of mesenchymal stem cells from various tissue sources to repair injured tissues has been explored over the past decade in large preclinical models and is now moving into the clinic.
Purpose: To report the case of a patient who exhibited compromised mesenchymal stem cell (MSC) function shortly after use of high-dose steroid to treat Bell's palsy, who recovered 7 weeks after therapy.
Study Design: Case report and controlled laboratory study.
Synovium-derived mesenchymal stem cells (SDMSCs) are one of the most suitable sources for cartilage repair because of their chondrogenic and proliferative capacity. However, the isolation methods for SDMSCs have not been extensively characterized. Thus, our aim in this study was to optimize the processes of enzymatic isolation followed by culture expansion in order to increase the number of SDMSCs obtained from the original tissue.
View Article and Find Full Text PDFLow oxygen tension (LOT) has been reported to promote chondrogenic differentiation and prevent cellular senescence of stem cells. Therefore, the introduction of LOT conditions into conventional tissue engineering processes could further improve the potential of the constructs generated for cartilage repair. The purpose of this study was to elucidate the feasibility of LOT preparation on the chondrogenic differentiation of a scaffold-free tissue-engineered construct (TEC) derived from synovial mesenchymal stem cells (MSCs), construct whose feasibility for cartilage repair has been demonstrated in previous preclinical and clinical studies.
View Article and Find Full Text PDFObjective: To investigate the feasibility of repairing osteochondral defects of critical size by performing mosaicplasty using multiple sliced costal cartilage grafts, which enables repair of extensively injured knees using grafts from a single rib.
Design: Critical osteochondral defects were prepared on the femoral groove of skeletally mature Japanese white rabbits. Costal cartilage grafts from a single rib were harvested and sliced into multiple segments (approximately 3-5 mm in length).
Because of its limited healing capacity, treatments for articular cartilage injuries are still challenging. Since the first report by Brittberg, autologous chondrocyte implantation has been extensively studied. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell-based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation.
View Article and Find Full Text PDF