Type 1 diabetes (T1D) affects three million Americans, with 80 new people diagnosed each day. T1D is currently uncurable and there is an urgent need to develop additional drug candidates to achieve the prevention of T1D. We propose AZD6738 (ATRi), an orally available drug currently in phases I and II of clinical trials for various cancers, as a novel candidate to prevent T1D.
View Article and Find Full Text PDFThe XPA protein functions together with the single-stranded DNA (ssDNA) binding protein RPA as the central scaffold to ensure proper positioning of repair factors in multi-protein nucleotide excision repair (NER) machinery. We previously determined the structure of a short motif in the disordered XPA N-terminus bound to the RPA32C domain. However, a second contact between the XPA DNA-binding domain (XPA DBD) and the RPA70AB tandem ssDNA-binding domains, which is likely to influence the orientation of XPA and RPA on the damaged DNA substrate, remains poorly characterized.
View Article and Find Full Text PDFWEE1 kinase is a key regulator of the G2/M transition. The WEE1 kinase inhibitor AZD1775 (WEE1i) induces origin firing in replicating cells. We show that WEE1i induces CDK1-dependent RIF1 phosphorylation and CDK2- and CDC7-dependent activation of the replicative helicase.
View Article and Find Full Text PDFDNA damage-induced signaling by ATR and CHK1 inhibits DNA replication, stabilizes stalled and collapsed replication forks, and mediates the repair of multiple classes of DNA lesions. We and others have shown that ATR kinase inhibitors, three of which are currently undergoing clinical trials, induce excessive origin firing during unperturbed DNA replication, indicating that ATR kinase activity limits replication initiation in the absence of damage. However, the origins impacted and the underlying mechanism(s) have not been described.
View Article and Find Full Text PDFXeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown.
View Article and Find Full Text PDFNucleotide excision repair (NER) is essential for removing many types of DNA lesions from the genome, yet the mechanisms of NER in humans remain poorly understood. This review summarizes our current understanding of the structure, biochemistry, interaction partners, mechanisms, and disease-associated mutations of one of the critical NER proteins, XPA.
View Article and Find Full Text PDFProg Biophys Mol Biol
March 2015
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery.
View Article and Find Full Text PDFBase propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not.
View Article and Find Full Text PDFXeroderma pigmentosum complementation group A (XPA) protein plays a critical role in the repair of DNA damage via the nucleotide excision repair (NER) pathway. XPA serves as a scaffold for NER, interacting with several other NER proteins as well as the DNA substrate. The critical importance of XPA is underscored by its association with the most severe clinical phenotypes of the genetic disorder Xeroderma pigmentosum.
View Article and Find Full Text PDFThe S100A8/S100A9 heterodimer calprotectin (CP) functions in the host response to pathogens through a mechanism termed "nutritional immunity." CP binds Mn(2+) and Zn(2+) with high affinity and starves bacteria of these essential nutrients. Combining biophysical, structural, and microbiological analysis, we identified the molecular basis of Mn(2+) sequestration.
View Article and Find Full Text PDFAcinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials.
View Article and Find Full Text PDF