Publications by authors named "Noriatsu Shigemura"

Objective: Olfactory and gustatory functions are important sensory aspects in humans. Although they are believed to influence each other, their interrelationship is not well understood. In this study, we aimed to investigate the relationship between the olfactory and gustatory functions based on the results of a large-scale epidemiological study (Iwaki Health Promotion Project) of the general local population.

View Article and Find Full Text PDF

Drug-induced taste disorders are a serious problem in an aging society. This study investigated the mechanisms underlying taste disturbances induced by diclofenac, a non-steroidal anti-inflammatory drug that reduces pain and inflammation by inhibiting the synthesis of prostaglandins by cyclooxygenase enzymes (COX-1 and COX-2). RT-PCR analyses demonstrated the expression of genes encoding arachidonic acid pathway components such as COX-1, COX-2 and prostaglandin synthases in a subset of mouse taste bud cells.

View Article and Find Full Text PDF

Drug-induced taste disorders reduce quality of life, but little is known about the molecular mechanisms by which drugs induce taste disturbances. In this study, we investigated the short-term and long-term effects of the antiarrhythmic drug flecainide, which is known to cause taste dysfunction. Analyses of behavioral responses (licking tests) revealed that mice given a single intraperitoneal injection of flecainide exhibited a significant reduction in preference for a sour tastant (HCl) but not for other taste solutions (NaCl, quinine, sucrose, KCl and monopotassium glutamate) when compared with controls.

View Article and Find Full Text PDF

On the tongue, the T1R-independent pathway (comprising glucose transporters, including sodium-glucose cotransporter (SGLT1) and the K channel) detects only sugars, whereas the T1R-dependent (T1R2/T1R3) pathway can broadly sense various sweeteners. Cephalic-phase insulin release, a rapid release of insulin induced by sensory signals in the head after food-related stimuli, reportedly depends on the T1R-independent pathway, and the competitive sweet taste modulators leptin and endocannabinoids may function on these two different sweet taste pathways independently, suggesting independent roles of two oral sugar-detecting pathways in food intake. Here, we examined the effect of adrenomedullin (ADM), a multifunctional regulatory peptide, on sugar sensing in mice since it affects the expression of SGLT1 in rat enterocytes.

View Article and Find Full Text PDF

GPRC5C is an orphan G protein-coupled receptor (GPCR) that belongs to the class C GPCR family. Although GPRC5C is expressed in various organs, its function and ligand are still undetermined. We found that GPRC5C is expressed in mouse taste cells, enterocytes, and pancreatic α-cells.

View Article and Find Full Text PDF

The sweet taste receptor plays an essential role as an energy sensor by detecting carbohydrates. However, the dynamic mechanisms of receptor activation remain unclear. Here, we describe the interactions between the transmembrane domain of the G protein-coupled sweet receptor subunit, TAS1R3, and allosteric modulators.

View Article and Find Full Text PDF

Mammalian taste bud cells are composed of several distinct cell types and differentiated from surrounding tongue epithelial cells. However, the detailed mechanisms underlying their differentiation have yet to be elucidated. In the present study, we examined an Ascl1-expressing cell lineage using circumvallate papillae (CVP) of newborn mice and taste organoids (three-dimensional self-organized tissue cultures), which allow studying the differentiation of taste bud cells in fine detail ex vivo.

View Article and Find Full Text PDF

Little is known about the molecular mechanisms underlying drug-induced taste disorders, which can cause malnutrition and reduce quality of life. One of taste disorders is known adverse effects of bisphosphonates, which are administered as anti-osteoporotic drugs. Therefore, the present study evaluated the effects of risedronate (a bisphosphonate) on taste bud cells.

View Article and Find Full Text PDF

The aim of this study is to develop a dipeptide showing an adiponectin receptor 1 (AdipoR1) agonistic effect in skeletal muscle L6 myotubes. Based on the structure of the AdipoR1 agonist, AdipoRon, 15 synthetic dipeptides were targeted to promote glucose uptake in L6 myotubes. Tyr-Pro showed a significant increase in glucose uptake among the dipeptides, while other dipeptides, including Pro-Tyr, failed to exert this effect.

View Article and Find Full Text PDF

Objective: Sweet taste receptors (STR) are expressed in the gut and other extra-oral tissues, suggesting that STR-mediated nutrient sensing may contribute to human physiology beyond taste. A common variant (Ile191Val) in the TAS1R2 gene of STR is associated with nutritional and metabolic outcomes independent of changes in taste perception. It is unclear whether this polymorphism directly alters STR function and how it may contribute to metabolic regulation.

View Article and Find Full Text PDF

Taste buds are complex sensory organs embedded in the epithelium of fungiform papillae (FP) and circumvallate papillae (CV). The sweet, bitter, and umami tastes are sensed by type II taste cells that express taste receptors (Tas1rs and Tas2rs) coupled with the taste G-protein α-gustducin. Recent studies revealed that the taste response profiles of α-gustducin-expressing cells are different between FP and CV, but which genes could generate such distinctive cell characteristics are still largely unknown.

View Article and Find Full Text PDF

Taste disorders are common adverse effects of cancer chemotherapy that can reduce quality of life and impair nutritional status. However, the molecular mechanisms underlying chemotherapy-induced taste disorders remain largely unknown. Furthermore, there are no effective preventive measures for chemotherapy-induced taste disorders.

View Article and Find Full Text PDF

Bitter taste receptors TAS2Rs detect noxious compounds in the oral cavity. Recent heterologous expression studies reported that some compounds function as antagonists for human TAS2Rs. For examples, amino acid derivatives such as γ-aminobutyric acid (GABA) and Nα,Nα-bis(carboxymethyl)-L-Lysine (BCML) blocked responses to quinine mediated by human TAS2R4.

View Article and Find Full Text PDF

Taste information is detected by taste cells and then transmitted to the brain through the taste nerve fibers. According to our previous data, there may be specific coding of taste quality between taste cells and nerve fibers. However, the molecular mechanisms underlying this coding specificity remain unclear.

View Article and Find Full Text PDF

Expression of insulin and its receptor (IR) in rodent taste cells has been proposed, but exactly which types of taste cells express IR and the function of insulin signaling in taste organ have yet to be determined. In this study, we analyzed expression of IR mRNA and protein in mouse taste bud cells in vivo and explored its function ex vivo in organoids, using RT-PCR, immunohistochemistry, and quantitative PCR. In mouse taste tissue, IR was expressed broadly in taste buds, including in type II and III taste cells.

View Article and Find Full Text PDF

The systemic renin-angiotensin system (RAS) is an important regulator of body fluid and sodium homeostasis. Angiotensin II (AngII) is a key active product of the RAS. We previously revealed that circulating AngII suppresses amiloride-sensitive salt taste responses and enhances the responses to sweet compounds via the AngII type 1 receptor (AT1) expressed in taste cells.

View Article and Find Full Text PDF

Class C G protein-coupled receptors (GPCRs) are obligatory dimers that are particularly important for neuronal responses to endogenous and environmental stimuli. Ligand recognition through large extracellular domains leads to the reorganization of transmembrane regions to activate G protein signaling. Although structures of individual domains are known, the complete architecture of a class C GPCR and the mechanism of interdomain coupling during receptor activation are unclear.

View Article and Find Full Text PDF

Sweet taste thresholds are positively related to plasma leptin levels in normal weight humans: both show parallel diurnal variations and associations with postprandial glucose and insulin rises. Here, we tested whether this relationship also exists in overweight and obese (OW/Ob) individuals with hyperleptinemia. We tested 36 Japanese OW/Ob subjects (body mass index (BMI) > 25 kg/m²) for recognition thresholds for various taste stimuli at seven different time points from 8:00 a.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways.

View Article and Find Full Text PDF

Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cβ2 (PLCβ2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds.

View Article and Find Full Text PDF

Leptin is an important hormone that regulates food intake and energy homeostasis by acting on central and peripheral targets. In the gustatory system, leptin is known to selectively suppress sweet responses by inhibiting the activation of sweet sensitive taste cells. Sweet taste receptor (T1R2+T1R3) is also expressed in gut enteroendocrine cells and contributes to nutrient sensing, hormone release and glucose absorption.

View Article and Find Full Text PDF

The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g.

View Article and Find Full Text PDF

Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored.

View Article and Find Full Text PDF

The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells.

View Article and Find Full Text PDF

Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells.

View Article and Find Full Text PDF