Publications by authors named "Noriaki Matsuki"

Microbubbles show peculiar properties, such as shrinking collapse, long lifetime, high gas solubility, negative electric charge, and free radical production. Fluids supersaturated with various gases can be easily generated using microbubbles. Oxygen microbubble fluid can be very useful for oxygen delivery to hypoxic tissues.

View Article and Find Full Text PDF

The circulating tumor cell (CTC) test has recently become popular for evaluating prognosis and treatment efficacy in cancer patients. The accuracy of the test is strongly dependent on the precision of the cancer cell separation. In this study, we developed a multistage microfluidic device to separate cancer cells from a red blood cell (RBC) suspension using inertial migration forces.

View Article and Find Full Text PDF

Microbubbles have been used in a variety of fields and have unique properties, for example shrinking collapse, long lifetime, efficient gas solubility, a negatively charged surface, and the ability to produce free radicals. In medicine, microbubbles have been used mainly as diagnostic aids to scan various organs of the body, and they have recently been investigated for use in drug and gene delivery. However, there have been no reports of blood oxygenation by use of oxygen microbubble fluids without shell reagents.

View Article and Find Full Text PDF

The circulating tumor cell test is used to evaluate the condition of breast cancer patients by counting the number of cancer cells in peripheral blood samples. Although microfluidic systems to detect or separate cells using the inertial migration effect may be applied to this test, the hydrodynamic forces acting on cancer cells in high hematocrit blood flow are incompletely understood. In the present study, we investigated the inertial migration of cancer cells in high hematocrit blood flow in microchannels.

View Article and Find Full Text PDF

Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences.

View Article and Find Full Text PDF

Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient.

View Article and Find Full Text PDF

Few studies have examined apoptosis induced by low-voltage electric pulses (LVEPs). LVEP-induce changes in membrane potential that are below the membrane breakdown threshold and increase membrane permeability without electroporation (pore formation) through the transport of extracellular substances via phagocytosis. We demonstrated that propidium iodide uptake and apoptosis increased in accordance with the duration and number of LVEPs in B16 cells, which showed relatively good viability under mild electric field conditions.

View Article and Find Full Text PDF

Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think.

View Article and Find Full Text PDF

We propose a new hemodynamic index for the initiation of a cerebral aneurysm, defined by the temporal fluctuations of tension/compression forces acting on endothelial cells. We employed a patient-specific geometry of a human internal carotid artery (ICA) with an aneurysm, and reconstructed the geometry of the ICA before aneurysm formation by artificially removing the aneurysm. We calculated the proposed hemodynamic index and five other hemodynamic indices (wall shear stress (WSS) at peak systole, time-averaged WSS, time-averaged spatial WSS gradient, oscillatory shear index (OSI), and potential aneurysm formation indicator (AFI)) for the geometry before aneurysm formation using a computational fluid dynamics technique.

View Article and Find Full Text PDF

The population of most developed countries is rapidly aging, which has created a growing demand for home care. A key issue in medicine is supporting the increasing number of elderly patients, both physically and mentally. In this study, we developed a wearable computer that contained modules for measuring electrocardiograms (ECGs) and femoral artery pulse waves using an accelerometer.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights how the shape and positioning of arterial structures affect blood flow in aneurysms, known as intra-aneurysmal hemodynamics.
  • Researchers used a new model to analyze various configurations and shapes of saccular aneurysms in relation to the parent artery, focusing on wall shear stress.
  • Findings reveal that aneurysms located laterally to the curve of the parent artery experience significantly higher wall shear stress compared to those positioned inside or outside the curve, emphasizing the configuration's impact on blood flow dynamics.
View Article and Find Full Text PDF

Electroporation is used for gene transfection, drug delivery, and cell fusion. While studies have shown that high voltage electroporation induces apoptosis in vitro, a strong electric field can lower cell survival rates. As there are no published reports which have examined apoptotic properties associate with low voltage electric charges, we demonstrated for the first time that consecutive low voltage pulses with a voltage lower than the membrane breakdown threshold of human cells can increase the membrane potential to the threshold required to induce electroporation.

View Article and Find Full Text PDF

1 Bisphosphonates are inhibitors of tumor cell growth as well as of bone resorption by inducing cell apoptosis. However, little is known regarding the mechanisms by which the drug induces cell apoptosis. The aim of the present study was to determine the effect of alendronate, one of the nitrogen-containing bisphosphonates on the phoshoinositide 3-kinase (PI3K)-Akt-NFkappaB pathway, the major cell survival pathway.

View Article and Find Full Text PDF

Tumour necrosis factor (TNF) is known to induce apoptosis, but recently, TNF was shown to promote cell survival, a process regulated by phosphatidylinositol-3-OH kinase (PI3K) and the NFkappaB pathway. In this study, we investigated the relationship between the molecules implicated in regulating TNF-induced cell survival and apoptosis induced by TNF in a human head and neck squamous cell carcinoma cell line (SAS), with special reference to the Akt pathway, one of the pathways related to cell survival. In SAS cells, TNF induced the phosphorylation of Akt at both Ser473 and Thr308, causing the activation of Akt, and also induced the phosphorylation and degradation of IkappaB (inhibitor of NFkappaB).

View Article and Find Full Text PDF