Publications by authors named "Noriaki Katayama"

Cyanobacteria are oxygen-evolving photosynthetic prokaryotes that affect the global carbon and nitrogen turnover. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a model cyanobacterium that has been widely studied and can utilize and uptake various nitrogen sources and amino acids from the outer environment and media.

View Article and Find Full Text PDF

Oxygenic photoautotrophic bacteria, cyanobacteria, have the tricarboxylic acid (TCA) cycle, and metabolite production using the cyanobacterial TCA cycle has been spotlighted recently. The unicellular cyanobacterium sp. strain PCC 6803 ( 6803) has been used in various studies on the cyanobacterial TCA cycle.

View Article and Find Full Text PDF

This study revealed different catalytic efficiencies of cyanobacterial argininosuccinate lyases in non-nitrogen-fixing and nitrogen-fixing cyanobacteria, demonstrating that L-arginine inhibition of L-argininosuccinate lyase is conserved among enzymes of three cyanobacterial orders. Arginine is a nitrogen-rich amino acid that uses a nitrogen reservoir, and its biosynthesis is strictly controlled by feedback inhibition. Argininosuccinate lyase (EC 4.

View Article and Find Full Text PDF

A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5-10 times higher than the levels of other TCA cycle metabolite.

View Article and Find Full Text PDF

Direct conversion of carbon dioxide to valuable compounds is a desirable way to reduce the environmental burden and switch from fossil to renewable fuels. Cyanobacteria are photosynthetic bacteria that perform oxygenic photosynthesis and are able to produce valuable compounds from carbon dioxide in the air. Synechocystis and Synechococcus species, model unicellular cyanobacteria, can produce succinate and lactate, which are commodity chemicals used to generate bioplastics.

View Article and Find Full Text PDF