This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO.
View Article and Find Full Text PDFBacterial Cellulose (BC) derived from local market or symbiotic culture of bacteria and yeast (SCOBY) was employed as the polymer matrix for hydroxyl multi-walled carbon nanotube (MWCNT-OH)-based electrochemical double-layer capacitor (EDLC). Chitosan (CS)-sodium iodide (NaI)-glycerol (Gly) electrolyte systems were used as the polymer electrolyte. CS-NaI-Gly electrolyte possesses conductivity, potential stability and ionic transference number of (1.
View Article and Find Full Text PDFPolymers (Basel)
August 2022
In this work, bacterial cellulose (BC)-based polymer derived from a symbiotic culture of bacteria and yeast (SCOBY) are optimized as both electrodes and electrolytes to fabricate a flexible and free-standing supercapacitor. BC is a multifunction and versatile polymer. Montmorillonite (MMT) and sodium bromide (NaBr) are used to improve mechanical strength and as the ionic source, respectively.
View Article and Find Full Text PDFMonitoring environmental hazards and pollution control is vital for the detection of harmful toxic gases from industrial activities and natural processes in the environment, such as nitrogen dioxide (NO), ammonia (NH), hydrogen (H), hydrogen sulfide (HS), carbon dioxide (CO), and sulfur dioxide (SO). This is to ensure the preservation of public health and promote workplace safety. Graphene and its derivatives, especially reduced graphene oxide (rGO), have been designated as ideal materials in gas-sensing devices as their electronic properties highly influence the potential to adsorb specified toxic gas molecules.
View Article and Find Full Text PDFChlorine gas is extensively utilised in industries as both a disinfectant and for wastewater treatment. It has a pungent and irritating odour that is comparable with that of bleach and can cause serious health issues such as headaches and breathing difficulties. Hence, efficiently, and accurately monitoring chlorine gas is critical to ensure that no undesirable incidents occur.
View Article and Find Full Text PDFInspired by nature, cellulose extracted from plant wastes has been explored, due to its great potential as an alternative for synthetic fiber and filler that contributes to structural performance. The drive of this study was to extract, treat, and evaluate the characteristics of rice straw (RS) ( L.) cellulose as a biodegradable reinforcement to be utilized in polymer base materials.
View Article and Find Full Text PDFThe wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) have been recognised as a promising material in a wide range of applications, from safety to energy-related devices. However, poor solubility in aqueous and organic solvents has hindered the utilisation and applications of carbon nanotubes. As studies progressed, the methodology for CNTs dispersion was established.
View Article and Find Full Text PDFOrganophosphorus (OP) compounds are highly toxic synthetic compounds which have been used as pesticides and developed as warfare nerve agents. They represent a threat to both military and civilian populations. OP pesticides affect the nervous system and are thought to have caused at least 5 million deaths since their discovery in the 1930s.
View Article and Find Full Text PDF