Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration.
View Article and Find Full Text PDFAluminium stress causes plant growth retardation and engenders productivity loss under acidic soil conditions. This study accentuates morpho-physiological and molecular bases of aluminium (Al) tolerance within and between wild (ILWL-15) and cultivated (L-4602 and BM-4) lentil species. Morpho-physiological studies revealed better cyto-morphology of tolerant genotypes over sensitive under Al stress conditions.
View Article and Find Full Text PDFAluminum stress deteriorates lentil production under acidic soils. Enhanced insight into Al tolerance traits is needed to improve its productivity. Therefore, Al-resistant (L-4602, PAL-8) and Al-sensitive (BM-4, EC-223229) cultivars along with a resistant wild (ILWL-15) were characterized for morpho-physiological traits viz.
View Article and Find Full Text PDF