Publications by authors named "Norel R"

Article Synopsis
  • Phenylketonuria (PKU) is a metabolic disorder that leads to high levels of phenylalanine, affecting speech and cognitive function.
  • Researchers used the Cookie Theft Picture Task to analyze spontaneous speech from adults with PKU and found significant linguistic differences compared to those without the disorder, despite traditional tests showing no differences.
  • Advanced AI analysis identified a new dimension of verbal proficiency correlated with PKU biomarkers, suggesting potential for improved assessments in PKU and other rare diseases through speech analysis.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative motor neuron disease that causes progressive muscle weakness. Progressive bulbar dysfunction causes dysarthria and thus social isolation, reducing quality of life. The Everything ALS Speech Study obtained longitudinal clinical information and speech recordings from 292 participants.

View Article and Find Full Text PDF

Background: There is a prevailing view that humans' capacity to use language to characterize sensations like odors or tastes is poor, providing an unreliable source of information.

Methods: Here, we developed a machine learning method based on Natural Language Processing (NLP) using Large Language Models (LLM) to predict COVID-19 diagnosis solely based on text descriptions of acute changes in chemosensation, i.e.

View Article and Find Full Text PDF

Background And Hypothesis: Disturbances in self-experience are a central feature of schizophrenia and its study can enhance phenomenological understanding and inform mechanisms underlying clinical symptoms. Self-experience involves the sense of self-presence, of being the subject of one's own experiences and agent of one's own actions, and of being distinct from others. Self-experience is traditionally assessed by manual rating of interviews; however, natural language processing (NLP) offers automated approach that can augment manual ratings by rapid and reliable analysis of text.

View Article and Find Full Text PDF

Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition.

View Article and Find Full Text PDF

We conducted a feasibility analysis to determine the quality of data that could be collected ambiently during routine clinical conversations. We used inexpensive, consumer-grade hardware to record unstructured dialogue and open-source software tools to quantify and model face, voice (acoustic and language) and movement features. We used an external validation set to perform proof-of-concept predictive analyses and show that clinically relevant measures can be produced without a restrictive protocol.

View Article and Find Full Text PDF

Prior research has identified associations between social media activity and psychiatric diagnoses; however, diagnoses are rarely clinically confirmed. Toward the goal of applying novel approaches to improve outcomes, research using real patient data is necessary. We collected 3,404,959 Facebook messages and 142,390 images across 223 participants (mean age = 23.

View Article and Find Full Text PDF

The diagnosis and treatment of psychiatric disorders depends on the analysis of behavior through language by a clinical specialist. This analysis is subjective in nature and could benefit from automated, objective acoustic and linguistic processing methods. This integrated approach would convey a richer representation of patient speech, particularly for expression of emotion.

View Article and Find Full Text PDF

People with Parkinson's (PWP) disease are under constant tension with respect to their dopamine replacement therapy (DRT) regimen. Waiting too long between doses results in more prominent symptoms, loss of motor function, and greater risk of falling per step. Shortened pill cycles can lead to accelerated habituation and faster development of disabling dyskinesias.

View Article and Find Full Text PDF

One of the main foci of addiction research is the delineation of markers that track the propensity of relapse. Speech analysis can provide an unbiased assessment that can be deployed outside the lab, enabling objective measurements and relapse susceptibility tracking. This work is the first attempt to study unscripted speech markers in cocaine users.

View Article and Find Full Text PDF

The detection of changes in mental states such as those caused by psychoactive drugs relies on clinical assessments that are inherently subjective. Automated speech analysis may represent a novel method to detect objective markers, which could help improve the characterization of these mental states. In this study, we employed computer-extracted speech features from multiple domains (acoustic, semantic, and psycholinguistic) to assess mental states after controlled administration of 3,4-methylenedioxymethamphetamine (MDMA) and intranasal oxytocin.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a degenerative disease which causes death of neurons controlling voluntary muscles. It is currently assessed with subjective clinical measurements, but it would benefit from alternative surrogate biomarkers that can better estimate disease progression. This work analyzes speech and fine motor coordination of subjects recruited by the Answer ALS foundation using data from a mobile app.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome.

View Article and Find Full Text PDF

Background: Using next-generation sequencing (NGS) to guide cancer therapy has created challenges in analyzing and reporting large volumes of genomic data to patients and caregivers. Specifically, providing current, accurate information on newly approved therapies and open clinical trials requires considerable manual curation performed mainly by human "molecular tumor boards" (MTBs). The purpose of this study was to determine the utility of cognitive computing as performed by Watson for Genomics (WfG) compared with a human MTB.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze a glioblastoma tumor specimen using three different methods to identify actionable variants.
  • Tumor DNA was assessed through targeted panel analysis, whole-genome sequencing (WGS), and RNA sequencing (RNA-seq), with data evaluated by both human experts and IBM Watson Genomic Analytics (WGA).
  • Results showed that WGS and RNA-seq identified more variants than targeted panels, and WGA performed the analysis much faster than human analysts, highlighting the potential for improved patient care with human-machine collaboration.
View Article and Find Full Text PDF

It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features.

View Article and Find Full Text PDF

Compiling a comprehensive list of cancer driver genes is imperative for oncology diagnostics and drug development. While driver genes are typically discovered by analysis of tumor genomes, infrequently mutated driver genes often evade detection due to limited sample sizes. Here, we address sample size limitations by integrating tumor genomics data with a wide spectrum of gene-specific properties to search for rare drivers, functionally classify them, and detect features characteristic of driver genes.

View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed.

View Article and Find Full Text PDF

Background: Understanding the interactions between antibodies and the linear epitopes that they recognize is an important task in the study of immunological diseases. We present a novel computational method for the design of linear epitopes of specified binding affinity to Intravenous Immunoglobulin (IVIg).

Results: We show that the method, called Pythia-design can accurately design peptides with both high-binding affinity and low binding affinity to IVIg.

View Article and Find Full Text PDF

Unlabelled: DREAM challenges are community competitions designed to advance computational methods and address fundamental questions in system biology and translational medicine. Each challenge asks participants to develop and apply computational methods to either predict unobserved outcomes or to identify unknown model parameters given a set of training data. Computational methods are evaluated using an automated scoring metric, scores are posted to a public leaderboard, and methods are published to facilitate community discussions on how to build improved methods.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with substantial heterogeneity in its clinical presentation. This makes diagnosis and effective treatment difficult, so better tools for estimating disease progression are needed. Here, we report results from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge.

View Article and Find Full Text PDF

Motivation: Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs.

View Article and Find Full Text PDF

Motivation: Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and 'translating' those results to humans.

View Article and Find Full Text PDF