A 1D coordination compound made of a photochromic dithienylethene linker and [Dy(Tp)F] units (with Tp=tris(3-(2-pyridyl)pyrazolyl)hydroborate) and having tetrakis[3,5-bis(trifluoromethyl)phenyl]borate counterions is reported. Full photoconversion from the closed isomer to the open isomer of the dithienylethene within single crystals allow for monitoring of the transformation by photocrystallography. Magnetic slow relaxation as well as magnetic hysteresis are observed and can be both modulated upon light irradiation.
View Article and Find Full Text PDFA dinuclear metallacycle assembled from a bispyridyl dithienylethene linker and a highly anisotropic dysprosium based Single Molecule Magnet (SMM) shows magnetic hysteresis at 1.8 K together with photoisomerization in single crystals (SC). The impact of photoswitching on the SMM behavior is evidenced and related to the specific organization of the magnetic units.
View Article and Find Full Text PDFWe report a ruthenium(II) bisacetylide complex bearing a photochromic dithienylethene (DTE) acetylide arm and a coordinating bipyridyl on the acetylide unit. Its coordination with Yb(TTA) centers (TTA = 2-thenoyltrifluoroacetonate) produces a bimetallic complex in which the dithienylethene isomerization is triggered by both ultraviolet (UV) light absorbed by the DTE unit and 450 nm excitation in a transition of the organometallic moiety. The redox behavior arising from the ruthenium(II) bisacetylide system is fully investigated by cyclic voltammetry and spectroelectrochemistry, revealing a lack of stability of the DTE-closed oxidized state preventing effective redox luminescence switching.
View Article and Find Full Text PDFWe report on the first systematic transport study of alkynyl-ended oligophenyl-diethynyl (OPA) single-molecule junctions with direct Au-C anchoring scheme at low temperature using the mechanically controlled break junction technique. Through quantitative statistical analysis of opening traces, conductance histograms and density functional theory studies, we identified different types of junctions, classified by their conductance and stretching behavior, for OPA molecules between Au electrodes with two to four phenyl rings. We performed inelastic electron tunneling spectroscopy and observed the excitation of Au-C vibrational modes confirming the existence of Au-C bonds at low temperature and compared the stability of molecule junctions upon mechanical stretching.
View Article and Find Full Text PDFAs conventional silicon-based transistors are fast approaching the physical limit, it is essential to seek alternative candidates, which should be compatible with or even replace microelectronics in the future. Here, we report a robust solid-state single-molecule field-effect transistor architecture using graphene source/drain electrodes and a metal back-gate electrode. The transistor is constructed by a single dinuclear ruthenium-diarylethene (Ru-DAE) complex, acting as the conducting channel, connecting covalently with nanogapped graphene electrodes, providing field-effect behaviors with a maximum on/off ratio exceeding three orders of magnitude.
View Article and Find Full Text PDFThe aim of molecular electronics is to miniaturize active electronic devices and ultimately construct single-molecule nanocircuits using molecules with diverse structures featuring various functions, which is extremely challenging. Here, we realize a gate-controlled rectifying function (the on/off ratio reaches ∼60) and a high-performance field effect (maximum on/off ratio >100) simultaneously in an initially symmetric single-molecule photoswitch comprising a dinuclear ruthenium-diarylethene (Ru-DAE) complex sandwiched covalently between graphene electrodes. Both experimental and theoretical results consistently demonstrate that the initially degenerated frontier molecular orbitals localized at each Ru fragment in the open-ring Ru-DAE molecule can be tuned separately and shift asymmetrically under gate electric fields.
View Article and Find Full Text PDFMetal complexes associated with photochromic molecules are attractive platforms to achieve smart light-switching materials with innovative and exciting properties due to specific optical, electronic, magnetic or catalytic features of metal complexes and by perturbing the excited-state properties of both components to generate new reactivity and photochemical properties. In this overview, we focus on selected achievements in key domains dealing with optical, redox, magnetic properties, as well as application in catalysis or supramolecular chemistry. We also try to point out scientific challenges that are still faced for future developments and applications.
View Article and Find Full Text PDFA number of factors contribute to orbital energy alignment with respect to the Fermi level in molecular tunnel junctions. Here, we report a combined experimental and theoretical effort to quantify the effect of metal image potentials on the highest occupied molecular orbital to Fermi level offset, ε, for molecular junctions based on self-assembled monolayers (SAMs) of oligophenylene ethynylene dithiols (OPX) on Au. Our experimental approach involves the use of both transport and photoelectron spectroscopy to extract the offsets, ε and ε, respectively.
View Article and Find Full Text PDFA one-dimensional coordination solid is synthesized by reaction of a bispyridyl dithienylethene (DTE) photochromic unit with the highly anisotropic dysprosium-based single-molecule magnet [Dy(Tp)F(pyridine)]PF. Slow magnetic relaxation characteristics are retained in the chain compound , and photoisomerization of the bridging DTE ligand induces a single-crystal-to-single-crystal transformation that can be monitored using photocrystallography. Notably, the resulting chain compound exhibits faster low-temperature relaxation than that of , which is apparent in magnetic hysteresis data collected for both compounds as high as 4 K.
View Article and Find Full Text PDFWith the help of a judicious association between dithienylethene (DTE) units, an ytterbium ion, and a ruthenium carbon-rich complex, we describe (i) the efficient (on/off) switching of pure NIR luminescence with a photochromic unit absorbing in the UV range and (ii) the association of electrochemical and photochemical control of this NIR emission in a single system with nondestructive readout.
View Article and Find Full Text PDFIn this work, we report the preparation of functional interfaces incorporating heterobimetallic systems consisting in the association of an electroactive carbon-rich ruthenium organometallic unit and a luminescent lanthanide ion (Ln = Eu and Yb). The organometallic systems are functionalized with a terminal hexylthiol group for subsequent gold surface modification. The formation of self-assembled monolayers (SAMs) with these complex molecular architectures are thoroughly demonstrated by employing a combination of different techniques, including infrared reflection absorption spectroscopy, ellipsometry, contact angle, and cyclic voltammetry measurements.
View Article and Find Full Text PDFIn this work, we explore the possibility of tuning the fluorescence intensity of two porphyrin systems through the electrochemical oxidation of an appended ruthenium acetylide bridge. Two electrochemically switchable systems, a dyad (ZnP-Ru, 3) and a triad (ZnP-Ru-P2H, 5), were prepared and investigated. In the ZnP-Ru dyad, the fluorescence of the zinc porphyrin was switched reversibly between the ON and OFF state upon the oxidation of the ruthenium unit, the most probable quenching process involved after oxidation being the electron transfer from the singlet excited state of ZnP to the oxidized ruthenium center.
View Article and Find Full Text PDFA central issue in molecular electronics in order to build functional devices is to assess whether changes in the electronic structure of isolated compounds by chemical derivatization are retained once the molecules are inserted into molecular junctions. Recent theoretical studies have suggested that this is not always the case due to the occurrence of pinning effects making the alignment of the transporting levels insensitive to the changes in the electronic structure of the isolated systems. We explore here this phenomenon by investigating at both the experimental and theoretical levels the I/ V characteristics of molecular junctions incorporating three different three-ring phenylene ethynylene derivatives designed to exhibit a significant variation of the HOMO level in the isolated state.
View Article and Find Full Text PDFWe report the synthesis of two lanthanide complexes including a chelating merocyanine (MC) ligand obtained from the reaction of a bis(pyridinemethyl)amine substituted spiropyran with yttrium(iii) or dysprosium(iii) triflate salts, whose structures were confirmed both in the solid state and in solution by single crystal X-ray diffraction studies and NMR investigations. The obtained merocyanine metal complexes can reversibly undergo a photo-triggered transformation consisting of a partial isomerization of the trans-merocyanine ligand to its cis isomer (cis-MC) providing complexes in which the metal-phenolate bond is retained. SQUID magnetometry experiments in combination with ab initio calculations were used to evidence and rationalize the single-molecule magnet behavior of the dysprosium complex and to probe the changes in the dysprosium ion local environment upon photo-isomerization.
View Article and Find Full Text PDFThe first dysprosium complexes with a terminal fluoride ligand are obtained as air-stable compounds. The strong, highly electrostatic dysprosium-fluoride bond generates a large axial crystal-field splitting of the J=15/2 ground state, as evidenced by high-resolution luminescence spectroscopy and correlated with the single-molecule magnet behavior through experimental magnetic susceptibility data and ab initio calculations.
View Article and Find Full Text PDFThe preparation and properties of novel ruthenium carbon-rich complexes [(Ph-C≡C-)Ru(dppe)(-C≡C-bipyM(hfac))] (n = 1, 2; M = Cu, Mn; bipy = 2,2'-bipyridin-5-yl) characterized by single-crystal X-ray diffraction and designed for molecular magnetism are reported. With the help of EPR spectroscopy, we show that the neutral ruthenium system sets up a magnetic coupling between two remote paramagnetic Cu units. More specifically, these copper compounds are unique examples of bimetallic and linear heterotrimetallic compounds for which a complete rationalization of the magnetic interactions could be made for exceptionally long distances between the spin carriers (8.
View Article and Find Full Text PDFTwo carbon-rich ruthenium complexes bearing a dithienylethene (DTE) unit and a hexylthiol spacer were designed to be attached on gold surfaces. Both compounds display photochemically driven switching properties, allowing reversible conversion from open to closed forms of the DTE units upon irradiation in solution. In contrast, only the bimetallic complex undergoes an efficient electrochemical ring closure at low potential, (0.
View Article and Find Full Text PDFIn this work, we show that a dithienylethene (DTE) modified dipicolinic amide ligand can be a versatile tool to modulate Eu(III) and Yb(III) luminescence using light as an external stimulus. The nature of the modulation depends on the lanthanide emitter: with the europium ion, the DTE ligand quenches the red luminescence upon ring closure, whereas with the ytterbium ion, ring closure can be used to turn on the luminescence in the NIR range.
View Article and Find Full Text PDFRacemic and optically pure [Dy(hfac)(L)] complexes with L = 3-(2-pyridyl)-4-aza[6]-helicene have been synthesized and characterized. Both the racemic and enantiopure forms behave as single molecule magnets in their crystalline phase, while electronic circular dichroism activity is evidenced. Ab initio calculations on isolated complexes followed by the determination of intermolecular dipolar couplings allowed the rationalization of the different low-temperature magnetic behaviours.
View Article and Find Full Text PDFA spiropyran-based switchable ligand isomerizes upon reaction with lanthanide(III) precursors to generate complexes with an unusual N O coordination sphere. The air-stable dysprosium(III) complex shows a hysteresis loop at 2 K and a very strong axial magnetic anisotropy generated by the merocyanine phenolate donor.
View Article and Find Full Text PDFWith the help of EPR spectroscopy, we show that the diamagnetic [Ru(dppe)2(-C≡C-R)2] system sets up a magnetic coupling between two organic radicals R, i.e., two nitronyl nitroxide or two verdazyl units, which is stronger than that of related platinum organometallic systems.
View Article and Find Full Text PDFA new series of ruthenium organometallic carbon-rich complexes, exhibiting fast electron transfer kinetics combined to a low oxidation potential, was synthesized for self-assembled monolayer (SAM) formation on gold surfaces. The molecules consist of highly conjugated ruthenium(II) mono(σ-arylacetylide) or bis(σ-arylacetylide) complexes functionalized with different bridge units with specific (protected) anchoring groups that possess high affinity for gold, such as thiol, carbodithioate, and isocyanide. Single component and mixed SAMs were prepared and fully characterized by wettability studies, infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and electrochemical analyses.
View Article and Find Full Text PDFThe association of a dithienylethene (DTE) system with ruthenium carbon-rich systems allows reaching sophisticated and efficient light- and electro-triggered multifunctional switches R-[Ru]-C≡C-DTE-C≡C-[Ru]-R, featuring multicolor electrochromism and electrochemical cyclization at remarkably low voltage. The spin density on the DTE ligand and the energetic stabilization of the system upon oxidation could be manipulated to influence the closing event, owing to the noninnocent behavior of carbon-rich ligands in the redox processes. A combination of spectroscopic (UV-vis-NIR-IR and EPR) and electrochemical studies, with the help of quantum chemical calculations, demonstrates that one can control and get a deeper understanding of the electrochemical ring closure with a slight modification of ligands remote from the DTE unit.
View Article and Find Full Text PDFA ruthenium carbon-rich-based ligand that brings redox reversibility to a dysprosium-based single-molecule magnet is reported. Long-distance perturbation of the 4f ion is achieved upon oxidation, resulting in an overall enhancement of the magnetic slow relaxation.
View Article and Find Full Text PDFIndividual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments.
View Article and Find Full Text PDF