Background: Climate change scenarios illustrate various pathways in terms of global warming ranging from "sustainable development" (Shared Socioeconomic Pathway SSP1-1.9), the best-case scenario, to 'fossil-fueled development' (SSP5-8.5), the worst-case scenario.
View Article and Find Full Text PDFDuring storage in the silk gland, the N-terminal domain (NT) of spider silk proteins (spidroins) keeps the aggregation-prone repetitive region in solution at extreme concentrations. We observe that NTs from different spidroins have co-evolved with their respective repeat region, and now use an NT that is distantly related to previously used NTs, for efficient recombinant production of the amyloid-β peptide (Aβ) implicated in Alzheimer's disease. A designed variant of NT from Nephila clavipes flagelliform spidroin, which in nature allows production and storage of β-hairpin repeat segments, gives exceptionally high yields of different human Aβ variants as a solubility tag.
View Article and Find Full Text PDFProteins require an optimal balance of conformational flexibility and stability in their native environment to ensure their biological functions. A striking example is spidroins, spider silk proteins, which are stored at extremely high concentrations in soluble form, yet undergo amyloid-like aggregation during spinning. Here, we elucidate the stability of the highly soluble N-terminal domain (NT) of major ampullate spidroin 1 in the Escherichia coli cytosol as well as in inclusion bodies containing fibrillar aggregates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2017
Biomimetic spinning of artificial spider silk requires that the terminal domains of designed minispidroins undergo specific structural changes in concert with the β-sheet conversion of the repetitive region. Herein, we combine solution and solid-state NMR methods to probe domain-specific structural changes in the NT2RepCT minispidroin, which allows us to assess the degree of biomimicry of artificial silk spinning. In addition, we show that the structural effects of post-spinning procedures can be examined.
View Article and Find Full Text PDFAmyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes).
View Article and Find Full Text PDFConversion of spider silk proteins from soluble dope to insoluble fibers involves pH-dependent dimerization of the N-terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins.
View Article and Find Full Text PDFSpider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known.
View Article and Find Full Text PDFThe mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here we investigate site-directed mutants of the N-terminal domain from Euprosthenops australis major ampullate spidroin 1 and find that the charged residues D40, R60 and K65 mediate intersubunit electrostatic interactions.
View Article and Find Full Text PDFFormation of spider silk from its constituent proteins-spidroins-involves changes from soluble helical/coil conformations to insoluble β-sheet aggregates. This conversion needs to be regulated to avoid precocious aggregation proximally in the silk gland while still allowing rapid silk assembly in the distal parts. Lowering of pH from about 7 to 6 is apparently important for silk formation.
View Article and Find Full Text PDFBRICHOS domains are encoded in > 30 human genes, which are associated with cancer, neurodegeneration, and interstitial lung disease (ILD). The BRICHOS domain from lung surfactant protein C proprotein (proSP-C) is required for membrane insertion of SP-C and has anti-amyloid activity in vitro. Here, we report the 2.
View Article and Find Full Text PDFSpider dragline silk, one of the strongest polymers in nature, is composed of proteins termed major ampullate spidroin (MaSp) 1 and MaSp2. The N-terminal (NT) domain of MaSp1 produced by the nursery web spider Euprosthenops australis acts as a pH-sensitive relay, mediating spidroin assembly at around pH 6.3.
View Article and Find Full Text PDFNature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity.
View Article and Find Full Text PDFWe have recently shown that it is possible to recombinantly produce a miniature spider silk protein, 4RepCT, that spontaneously self-assembles into mechanically stable macroscopic fibers (Stark, M.; Grip, S.; Rising, A.
View Article and Find Full Text PDFThe C-terminal domain of lung surfactant protein C (CTC) precursor (proSP-C) is involved in folding of the transmembrane segment of proSP-C. CTC includes a Brichos domain with homologs in cancer- and dementia-associated proteins. Mutations in the Brichos domain cause misfolding of proSP-C and hence amyloid fibril formation in interstitial lung disease.
View Article and Find Full Text PDFBackground: Canine pulmonary fibrosis (CPF) occurs most commonly in West Highland White Terriers. The differing incidences of CPF among dog breeds suggest that genetic factors contribute to its pathophysiology. Pulmonary fibrosis in humans is associated with mutations in the gene coding for lung surfactant protein C (SP-C) (SFTPC).
View Article and Find Full Text PDFProsurfactant protein C (proSP-C) is a 197-residue integral membrane protein, in which the C-terminal domain (CTC, positions 59-197) is localized in the endoplasmic reticulum (ER) lumen and contains a Brichos domain (positions 94-197). Mature SP-C corresponds largely to the transmembrane (TM) region of proSP-C. CTC binds to SP-C, provided that it is in nonhelical conformation, and can prevent formation of intracellular amyloid-like inclusions of proSP-C that harbor mutations linked to interstitial lung disease (ILD).
View Article and Find Full Text PDFA subset of protein misfolding diseases, including, for example, Alzheimer's disease, is associated with the formation of highly insoluble amyloid fibrils with a beta-sheet structure. The amyloidogenic human lung surfactant protein C (SP-C) is generated from SP-C precursor, which has a C-terminal domain (CTC) that prevents SP-C amyloid fibril formation. Analysis of the substrate specificity of CTC reveals that it binds to all amino acid residues that promote membrane insertion, provided that they are in a nonhelical conformation.
View Article and Find Full Text PDFObjective: Surface activity of pulmonary surfactant is impaired by exposure to syringes lubricated with silicone oil (SO). These syringes are used daily in clinical practice.
Design: In vitro experiments were used for detection of SO, determination of surface activity, and semiquantitative measurement of surfactant protein (SP)-B and -C in SO/surfactant mixtures.
Amyloid fibrils are found in approximately 25 different diseases, including Alzheimer's disease. Lung surfactant protein C (SP-C) forms fibrils in association with pulmonary disease. It was recently found that the C-terminal domain of proSP-C (CTC), which is localized to the endoplasmic reticulum (ER) lumen, protects the transmembrane (TM) part of (pro)SP-C from aggregation into amyloid until it has a folded into an alpha-helix.
View Article and Find Full Text PDFThe newly synthesized proSP-C (surfactant protein C precursor) is an integral ER (endoplasmic reticulum) membrane protein with a single metastable polyvaline alpha-helical transmembrane domain that comprises two-thirds of the mature peptide. More than 20 mutations in the ER-lumenal CTC (C-terminal domain of proSP-C), are associated with ILD (interstitial lung disease), and some of the mutations cause intracellular accumulation of cytotoxic protein aggregates and a corresponding decrease in mature SP-C. In the present study, we showed that: (i) human embryonic kidney cells expressing the ILD-associated mutants proSP-C(L188Q) and proSP-C(DeltaExon4) accumulate Congo Red-positive amyloid-like inclusions, whereas cells transfected with the mutant proSP-C(I73T) do not; (ii) transfection of CTC into cells expressing proSP-C(L188Q) results in a stable CTC-proSP-C(L188Q) complex, increased proSP-C(L188Q) half-life and reduced formation of Congo Red-positive deposits; (iii) replacement of the metastable polyvaline transmembrane segment with a stable polyleucine transmembrane segment likewise prevents formation of amyloid-like proSP-C(L188Q) aggregates; and (iv) binding of recombinant CTC to non-helical SP-C blocks SP-C amyloid fibril formation.
View Article and Find Full Text PDFSpider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied.
View Article and Find Full Text PDFSurfactant protein C (SP-C) constitutes the transmembrane part of prosurfactant protein C (proSP-C) and is alpha-helical in its native state. The C-terminal part of proSP-C (CTC) is localized in the endoplasmic reticulum lumen and binds to misfolded (beta-strand) SP-C, thereby preventing its aggregation and amyloid fibril formation. In this study, we investigated the structure of recombinant human CTC and the effects of CTC-membrane interaction on protein structure.
View Article and Find Full Text PDFBackground: Total immunoglobulin E (IgE) is an important indicator of allergic disorders. However, its role in allergic patients in India has not been evaluated in relation to atopic status for a reference range as compared with healthy subjects.
Objective: The aim of the study was to establish serum IgE levels in a diseased group, study its relationship with atopy, and to compare the same with healthy volunteers in Indian subjects.