Publications by authors named "Nordine Hendaoui"

Objective: The use of lasers to fuse different tissues has been studied for 50 years. As none of these experiments concerned the oral soft tissues, our objective was to assess the feasibility of laser gingiva welding.

Materials And Methods: Porcine full-thickness gingival flaps served to prepare calibrated samples in the middle of which a 2 cm long incision was closed, either by conventional suture or by laser tissue welding (LTW).

View Article and Find Full Text PDF

Although confocal infrared (IR) absorption micro-spectroscopy is well established for far-field chemical imaging, its scope remains restricted since diffraction limits the spatial resolution to values a little above half the radiation wavelength. Yet, the successful implementations of below-the-diffraction limit far-field fluorescence microscopies using saturated irradiation patterns for example for stimulated-emission depletion and saturated structured-illumination suggest the possibility of using a similar optical patterning strategy for infrared absorption mapping at high resolution. Simulations are used to show that the simple mapping of the difference in transmitted/reflected IR energy between a saturated vortex-shaped beam and a Gaussian reference with a confocal microscope affords the generation of high-resolution vibrational absorption images.

View Article and Find Full Text PDF

A framework is proposed for infrared (IR) absorption microscopy in the far-field with a spatial resolution below the diffraction limit. The sub-diffraction resolution is achieved by pumping a transient contrast in the population of a selected vibrational mode with IR pulses that exhibit alternating central minima and maxima, and by probing the corresponding absorbance at the same wavelength with adequately delayed Gaussian pulses. Simulations have been carried out on the basis of empirical parameters emulating patterned thin films of octadecyltrichlorosilane and a resolution of 250 nm was found when probing the CH₂ stretches at 3.

View Article and Find Full Text PDF