Publications by authors named "Nordell P"

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) play an important role in the treatment of type 2 diabetes (T2D) and obesity. The relationship between efficacy and dosing regimen has been studied extensively for this class of molecules. However, a comprehensive analysis of the translation of in vitro data to in vivo efficacious exposure is still lacking.

View Article and Find Full Text PDF

Statins are used to reduce liver cholesterol levels but also carry a dose-related risk of skeletal muscle toxicity. Concentrations of statins in plasma are often used to assess efficacy and safety, but because statins are substrates of membrane transporters that are present in diverse tissues, local differences in intracellular tissue concentrations cannot be ruled out. Thus, plasma concentration may not be an adequate indicator of efficacy and toxicity.

View Article and Find Full Text PDF

Accurate prediction of pharmacokinetic parameters, such as renal clearance, is fundamental to the development of effective and safe new treatments for patients. However, conventional renal models have a limited ability to predict renal drug secretion, a process that is dependent on transporters in the proximal tubule. Improvements in microphysiological systems (MPS) have extended our in vitro capabilities to predict pharmacokinetic parameters.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers modified previously established DNA-PKcs inhibitors by adding a basic group to improve distribution and metabolic stability, but this tweak also caused hERG activity, which can lead to heart issues.
  • * Further optimization was needed, resulting in a compound that has low hERG activity and maintains good selectivity and pharmacokinetics for potential therapeutic use.
View Article and Find Full Text PDF

A stabilized high drug load intravenous formulation could allow compounds with less optimal pharmacokinetic profiles to be developed. Polyethylene glycol (PEG)-ylation is a frequently used strategy for particle delivery systems to avoid the liver, thereby extending blood circulation time. The present work reports the mouse in vivo distribution after i.

View Article and Find Full Text PDF

The fraction of unbound drug (fu) in in vitro intrinsic clearance (CL) incubation is an important parameter in the pursuit of accurate clearance predictions and is often predicted using algorithms based on drug lipophilicity measures. However, analysis of an AstraZeneca database suggests that simple lipophilicity alone is a relatively poor predictor of fu measured using equilibrium dialysis. He fu value can also be measured directly in CL assays using multiple concentrations of hepatocytes or microsomal protein.

View Article and Find Full Text PDF

Aim: AZD1981 is an orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) receptor antagonist progressed to phase II trials for the treatment of allergic asthma. Previously performed in vitro human hepatocyte incubations identified N-deacetylated AZD1981 as a primary metabolite. We report on metabolite exposure from a clinical excretion balance, on in vitro studies performed to determine the likelihood of a metabolite-dependent drug-drug interaction (DDI) and on a clinical warfarin DDI study.

View Article and Find Full Text PDF

Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.

View Article and Find Full Text PDF

Uptake transporters may act to elevate the intrahepatic exposure of drugs, impacting the route and rate of elimination, as well as the drug-drug interaction potential. We have here extended the assessment of metabolic drug stability in a standard human hepatocyte incubation to allow for elucidation of the distribution-metabolism interplay established for substrates of drug transporters. Cellular concentration-time profiles were obtained from incubations of eight known OATP substrates at 1 μM, each for two different 10-donor batches of suspended cryopreserved human hepatocytes.

View Article and Find Full Text PDF

Human embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively).

View Article and Find Full Text PDF

Incubational binding or the fraction of drug unbound in an in vitro incubation, fuinc, is an important parameter to predict or measure in the pursuit of accurate clearance predictions from in vitro data. Here we describe a method for fuinc determination directly in the hepatocyte intrinsic clearance (CLint) assay with emphasis on compounds that are actively transported into hepatocytes, hypothesizing that for such compounds the typical protocol of 1 million hepatocytes/ml systematically underestimates the maximum attainable unbound intracellular drug concentration. Using the transporter substrate atorvastatin as a test compound, incubations were performed and a mathematical model applied to describe metabolism, distribution, and binding at different hepatocyte concentrations.

View Article and Find Full Text PDF

Despite the extensive interest in structurally explaining the photophysics of DNA-bound [Ru(phen)(2)dppz](2+) and [Ru(bpy)(2)dppz](2+), the origin of the two distinct emission lifetimes of the pure enantiomers when intercalated into DNA has remained elusive. In this report, we have combined a photophysical characterization with a detailed isothermal titration calorimetry study to investigate the binding of the pure Δ and Λ enantiomers of both complexes with [poly(dAdT)](2). We find that a binding model with two different binding geometries, proposed to be symmetric and canted intercalation from the minor groove, as recently reported in high-resolution X-ray structures, is required to appropriately explain the data.

View Article and Find Full Text PDF

Context: Several automated digital imaging systems have been introduced in recent years to improve turnaround time and proficiency in examining peripheral blood smears in hematology laboratories.

Objective: To evaluate a new automated digital imaging system, Nextslide Digital Review Network (Nextslide), for examination of peripheral blood smears.

Design: We evaluated 479 peripheral blood smears, of which 247 (51.

View Article and Find Full Text PDF

The effect of DNA supercoiling on a sterically very demanding threading intercalation process is investigated here. We find that the threading rate of a dimeric ruthenium complex into a negatively supercoiled plasmid at low binding density is 2 orders of magnitude higher than into the cleaved linear form. Further saturation is on the other hand kinetically hampered in comparison to the relaxed DNA.

View Article and Find Full Text PDF

Binuclear ruthenium complexes that bind DNA by threading intercalation have recently been found to exhibit an exceptional kinetic selectivity for long polymeric adenine-thymine (AT) DNA. A series of oligonucleotide hairpin duplexes containing a central tract of 6-44 alternating AT base pairs have here been used to investigate the nature of the recognition mechanism. We find that, above a threshold AT tract length corresponding to one helix turn of B-DNA, a dramatic increase in threading intercalation rate occurs.

View Article and Find Full Text PDF

High selectivity for long AT sequences can be attained by kinetically controlled DNA threading intercalation by binuclear ruthenium(II) complexes. The rate of intercalation is strongly correlated to the number of consecutive AT basepairs, being up to 2500 times faster with an AT polymer compared to mixed-sequence DNA.

View Article and Find Full Text PDF

We recently reported that ruthenium complexes, with general structure [mu-bidppz(bipy)4Ru2](4+) (B) or [mu-bidppz(phen)4Ru2](4+) (P) (bidppz=11,11'-bi(dipyrido[3,2- a:2',3'-c]phenazinyl)), show extreme kinetic selectivity for long AT tracts over mixed-sequence calf thymus DNA (ct-DNA), a selectivity that also varies markedly with the size (between B and P) and sense of chirality of the complex. Earlier studies, exploiting the great increase in luminescence intensity when the compound intercalates, have yielded complex kinetics indicating the presence of both first- and second-order processes. Even with a homogeneous DNA sequence, such as poly(dAdT)2, the luminescence kinetics generally requires more than a single exponential for a satisfactory fit.

View Article and Find Full Text PDF

We here exploit the recently reported thermodynamic preference for poly(dAdT)(2) over mixed-sequence calf thymus (ct) DNA of two binuclear ruthenium complexes, DeltaDelta-[mu-bidppz(bipy)4Ru2](4+) (B) and DeltaDelta-[mu-bidppz(phen)(4)Ru(2)](4+) (P), that bind to DNA by threading intercalation, to determine their intrinsic dissociation rates. After adding poly(dAdT)(2) as a sequestering agent to B or P bound to ct-DNA, the observed rate of change in luminescence upon binding to the polynucleotide reflects the rate of dissociation from the mixed sequence. The activation parameters for the threading and dissociation rate constants allow us for the first time to characterize the thermodynamics of the exceedingly slow threading intercalation equilibrium of B and P with ct-DNA.

View Article and Find Full Text PDF

In the long succession of small transition-metal compounds interacting reversibly with DNA, semirigid binuclear ruthenium complexes stand out by displaying exceptionally slow binding kinetics. To reach the final intercalated state, one of the bulky metal centers has to be threaded through the base stack, leading to a high level of structural discrimination. This makes the idea of utilizing binuclear complexes interesting in applications involving DNA sequence or conformation recognition.

View Article and Find Full Text PDF

A prospective, randomized study was performed in 559 patients to compare two doses of oral cefadroxil with three doses of intravenous cefuorxime as antibiotic prophylaxis in intra- and subtrochanteric hip fracture surgery. Antibiotic concentrations in the wound fluid were determined at the start and at the end of the operation. The first dose of cefadroxil was given about 2 h before surgery and cefuroxime about 30 min before operation.

View Article and Find Full Text PDF