Publications by authors named "Norberto De La Cruz"

The major latex proteins (MLP) are a protein family first identified in the latex of opium poppy. They are found only in plants and have 24 identified members in alone as well as in other plants such as peach, strawberry, melon, cucumber, and soybean. While the function of the MLPs is unknown, they have been associated with fruit and flower development and in pathogen defense responses.

View Article and Find Full Text PDF

Stem cell homing and breast cancer metastasis are orchestrated by the chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4. Here, we report the nuclear magnetic resonance structure of a constitutively dimeric SDF-1 in complex with a CXCR4 fragment that contains three sulfotyrosine residues important for a high-affinity ligand-receptor interaction. CXCR4 bridged the SDF-1 dimer interface so that sulfotyrosines sTyr7 and sTyr12 of CXCR4 occupied positively charged clefts on opposing chemokine subunits.

View Article and Find Full Text PDF

We determined the solution structure of At3g28950 from A. thaliana, a homolog of At5g39720, whose structure we solved earlier. The secondary structure of the 165-aa protein consists of a 5-strand antiparallel beta-barrel domain flanked by two alpha-helices and a 2-strand beta-sheet; an additional free C-terminal alpha-helix extends into solution.

View Article and Find Full Text PDF

The protein Bc059385, whose solution structure is reported here, is the human representative of a recently identified family of membrane-anchored ubiquitin-fold (MUB) proteins. Analysis of their similarity to ubiquitin indicates that homologous amino acid residues in MUBs form a hydrophobic surface very similar to the recognition patch surrounding Ile-44 in ubiquitin. This suggests that MUBs may interact with proteins containing an alpha-helical motif similar to those of some ubiquitin binding domains.

View Article and Find Full Text PDF

We have applied an efficient solid-phase protein refolding method to the milligram scale production of natively folded recombinant chemokine proteins. Chemokines are intensely studied proteins because of their roles in immune system regulation, response to inflammation, fetal development, and numerous disease states including, but not limited to, HIV-1/AIDS, cancer metastasis, Crohn's disease, asthma and arthritis. Many investigators use recombinant chemokines for research purposes, however these proteins partition almost exclusively to the inclusion body fraction when produced in Escherichia coli.

View Article and Find Full Text PDF

The Rat Genome Database (RGD) (http://rgd.mcw.edu) aims to meet the needs of its community by providing genetic and genomic infrastructure while also annotating the strengths of rat research: biochemistry, nutrition, pharmacology and physiology.

View Article and Find Full Text PDF

Integration of the large variety of genome maps from several organisms provides the mechanism by which physiological knowledge obtained in model systems such as the rat can be projected onto the human genome to further the research on human disease. The release of the rat genome sequence provides new information for studies using the rat model and is a key reference against which existing and new rat physiological results can be aligned. Previously, we described comparative maps of the rat, mouse, and human based on EST sequence comparisons combined with radiation hybrid maps.

View Article and Find Full Text PDF