Plant Physiol Biochem
June 2019
Aquaporins are key proteins in regulating water transport, plant growth and development. In this study, we investigated the function of plasma membrane intrinsic proteins (PIPs) in both yeast (Saccharomyces cerevisiae) and rice (Oryza sativa cv. Nipponbare).
View Article and Find Full Text PDFPlasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition.
View Article and Find Full Text PDFStomata, the microscopic pores on the surface of the aerial parts of plants, are bordered by two specialized cells, known as guard cells, which control the stomatal aperture according to endogenous and environmental signals. Like most movements occurring in plants, the opening and closing of stomata are based on hydraulic forces. During opening, the activation of plasma membrane and tonoplast transporters results in solute accumulation in the guard cells.
View Article and Find Full Text PDFBackground: Determination of CO2 diffusion rates in living cells revealed inconsistencies with existing models about the mechanisms of membrane gas transport. Mainly, these discrepancies exist in the determined CO2 diffusion rates of bio-membranes, which were orders of magnitudes below those for pure lipid bilayers or theoretical considerations as well as in the observation that membrane insertion of specific aquaporins was rescuing high CO2 transport rates. This effect was confirmed by functional aquaporin protein analysis in heterologous expression systems as well as in bacteria, plants and partly in mammals.
View Article and Find Full Text PDFWe functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root.
View Article and Find Full Text PDFWe demonstrate that membranes consisting of certain triblock-copolymers were tight for CO₂. Using a novel approach, we provide evidence for aquaporin facilitated CO₂ diffusion. Plant aquaporins obtained from heterologous expression were inserted into triblock copolymer membranes.
View Article and Find Full Text PDFThe membrane CO(2) flux into Arabidopsis mesophyll cells was studied using a scanning pH microelectrode. Arabidopsis thaliana mesophyll cells were exposed to photosynthesis-triggering light intensities, which induced cellular CO(2) uptake. Data obtained on a AtPIP1;2 T-DNA insertion line indicated that under these conditions, cellular CO(2) transport was not limited by unstirred layer effects but was dependent on the expression of the aquaporin AtPIP1;2.
View Article and Find Full Text PDFHeterologous expression in yeast cells revealed that NtAQP1, a member of the so-called PIP1 aquaporin subfamily, did not display increased water transport activity in comparison with controls. Instead, an increased CO(2)-triggered intracellular acidification was observed. NtPIP2;1, which belongs to the PIP2 subfamily of plant aquaporins, behaved as a true aquaporin but lacked a CO(2)-related function.
View Article and Find Full Text PDFPhotosynthesis is often limited by the rate of CO(2) diffusion from the atmosphere to the chloroplast. The primary resistances for CO(2) diffusion are thought to be at the stomata and at photosynthesizing cells via a combination resulting from resistances of aqueous solution as well as the plasma membrane and both outer and inner chloroplast membranes. In contrast with stomatal resistance, the resistance of biological membranes to gas transport is not widely recognized as a limiting factor for metabolic function.
View Article and Find Full Text PDFPlant Cell Environ
May 2008
The impact of aquaporin function on plant water balance is discussed. The significance of these proteins for root water uptake, water conductance in the xylem, including embolism refilling and the role of plant aquaporins in leaf physiology, is described. Emphasis is placed on certain aspects of water stress reactions and the correlation of aquaporins to abscisic acid as well as on the relation of water and CO2 permeability in leaves.
View Article and Find Full Text PDFBackground: Plant leaf movements can be mediated by specialized motor organs, the pulvini, or can be epinastic (i.e. based on different growth velocities of the adaxial and abaxial halves of the leaf).
View Article and Find Full Text PDFPlants have been reported to contain a large set of aquaporins (38 for Arabidopsis), which has been divided into four subfamilies on the basis of similarities in their amino acid sequences. They belong to the large superfamily of major intrinsic proteins (MIP), which was the basis for the nomenclature PIP, TIP, and NIP, also indicating the subcellular localization plasma membrane, tonoplast, and nodule of the respective founding member. The fourth subfamily of small and basic intrinsic proteins is not well characterized so far.
View Article and Find Full Text PDFAlmost all land plants have developed a symbiosis with arbuscular mycorrhizal fungi. Establishment of the association is accompanied by structural changes in the plant root. During arbuscule formation fungal hyphae penetrate the root apoplast and install highly specialized interfaces for solute transport between plant and fungus.
View Article and Find Full Text PDFTo study the molecular bases of water transport in olive we characterized cDNAs from Olea europaea cv "Leccino" related to the aquaporin (AQP) gene family. A phylogenetic analysis of the corresponding polypeptides confirmed that they were part of water channel proteins localized in the plasma membrane and in the tonoplast. The full-length sequences were obtained by RACE-PCR and were named OePIP1.
View Article and Find Full Text PDFWater is the major component of all living cells, and efficient regulation of water homeostasis is essential for many biological processes. The mechanism by which water passes through biological membranes was a matter of debate until the discovery of the aquaporin water channels. Aquaporins are intrinsic membrane proteins characterized by six transmembrane helices that selectively allow water or other small uncharged molecules to pass along the osmotic gradient.
View Article and Find Full Text PDFThe formation of ectomycorrhizas, a tight association between fine roots of trees and certain soil fungi, improves plant nutrition in a nutrient-limited environment and may increase plant survival under water stress conditions. To investigate the impact of mycorrhiza formation on plant water uptake, seven genes coding for putative water channel proteins (aquaporins) were isolated from a poplar ectomycorrhizal cDNA library. Four out of the seven genes were preferentially expressed in roots.
View Article and Find Full Text PDFSeveral processes during sexual reproduction in higher plants involve the movement of water between cells or tissues, such as occurs during dehiscence of the anther and hydration of the pollen grain after it is deposited on a stigma. To get more insight in these processes, a set of putative aquaporins was cloned and it was found that at least 15 are expressed in reproductive organs, which indicates that the control of water flow is important for reproduction. Functional studies in Xenopus laevis oocytes using two of the cDNAs showed that NtPIP2;1 is an efficient aquaporin, whereas NtPIP1;1 is not.
View Article and Find Full Text PDFAquaporins, found in virtually all living organisms, are membrane-intrinsic proteins that form water-permeable complexes. The mammalian aquaporin AQP1 has also shown CO2 permeability when expressed heterologously in Xenopus oocytes, although whether this is a biochemical curiosity or of physiological significance is a matter of debate. Here we report that, in the same expression system, a CO2 permeability comparable to that of the human AQP1 is observed for the tobacco plasma membrane aquaporin NtAQP1.
View Article and Find Full Text PDFLeaf-moving organs, remarkable for the rhythmic volume changes of their motor cells, served as a model system in which to study the regulation of membrane water fluxes. Two plasma membrane intrinsic protein homolog genes, SsAQP1 and SsAQP2, were cloned from these organs and characterized as aquaporins in Xenopus laevis oocytes. Osmotic water permeability (P(f)) was 10 times higher in SsAQP2-expressing oocytes than in SsAQP1-expressing oocytes.
View Article and Find Full Text PDF