Publications by authors named "Norbert Trautmann"

The quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers Z ≳ 100 (refs. ). Shell effects also affect the sizes and shapes of atomic nuclei, as shown by laser spectroscopy studies in lighter nuclides.

View Article and Find Full Text PDF

This work shows the ability of resonance ionization mass spectrometry (RIMS) to determine Tc at the ultratrace level. The characterization of the prepared samples by X-ray photoelectron spectroscopy (XPS) and optimization of the RIMS setup for this purpose, as well as the application of the RIMS method to a soil sample, are presented in this article. Tc was used as a tracer isotope to determine the amount of Tc in a soil sample with RIMS.

View Article and Find Full Text PDF

Today's most precise time and frequency measurements are performed with optical atomic clocks. However, it has been proposed that they could potentially be outperformed by a nuclear clock, which employs a nuclear transition instead of an atomic shell transition. There is only one known nuclear state that could serve as a nuclear clock using currently available technology, namely, the isomeric first excited state of (229)Th (denoted (229m)Th).

View Article and Find Full Text PDF

Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured.

View Article and Find Full Text PDF

A combined setup for spatially resolved mass analysis of trace amounts of elements and macromolecules is presented. Using a MALDI-TOF mass spectrometer, a laser spectroscopic setup for resonant ionization of neutral atoms has been implemented. This allows for an efficient and selective detection of trace elements by means of resonance ionization mass spectrometry (RIMS).

View Article and Find Full Text PDF

Capillary electrophoresis (CE) was coupled to ICPMS in order to combine the good performance of this separation technique with the high sensitivity of the ICPMS for the analysis of plutonium and neptunium oxidation states. The combination of a fused-silica capillary with a MicroMist AR 30-I-FM02 nebulizer and a Cinnabar small-volume cyclonic spray chamber yielded the best separation results. With this setup, it was possible to separate a model element mixture containing neptunium (NpO2(+)), uranium (UO2(2+)), lanthanum (La3+), and thorium (Th4+) in 1 M acetic acid.

View Article and Find Full Text PDF