The development of new therapeutics targeting enzymes involved in epigenetic pathways such as histone modification and DNA methylation has received a lot of attention, particularly for targeting diverse cancers. Unfortunately, irreversible nucleoside inhibitors (azacytidine and decitabine) have proven highly cytotoxic, and competitive inhibitors are also problematic. This work describes synthetic and structural investigations of a new class of allosteric DNA methyltransferase 3A (DNMT3A) inhibitors, leading to the identification of several critical pharmacophores in the lead structure.
View Article and Find Full Text PDFStrand-separation is emerging as a novel DNA recognition mechanism but the underlying mechanisms and quantitative contribution of strand-separation to fidelity remain obscure. The bacterial DNA adenine methyltransferase, CcrM, recognizes 5'GANTC'3 sequences through a DNA strand-separation mechanism with unusually high selectivity. To explore this novel recognition mechanism, we incorporated Pyrrolo-dC into cognate and noncognate DNA to monitor the kinetics of strand-separation and used tryptophan fluorescence to follow protein conformational changes.
View Article and Find Full Text PDFEpigenetic mechanisms leading to transcriptional regulation, including DNA methylation, are frequently dysregulated in diverse cancers. Interfering with aberrant DNA methylation performed by DNA cytosine methyltransferases (DNMTs) is a clinically validated approach. In particular, the selective inhibition of the de novo DNMT3A and DNMT3B enzymes, whose expression is limited to early embryogenesis, adult stem cells, and in cancers, is particularly attractive; such selectivity is likely to attenuate the dose limiting toxicity shown by current, non-selective DNMT inhibitors.
View Article and Find Full Text PDFWe previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context.
View Article and Find Full Text PDFScreening of a small chemical library (Medicines for Malaria Venture Pathogen Box) identified two structurally related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A inhibitors with low micromolar inhibition constants. The uncompetitive and mixed type inhibition patterns with DNA and AdoMet suggest these molecules act through an allosteric mechanism, and thus are unlikely to bind to the enzyme's active site. Unlike the clinically used mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme active site, the inhibitors described here could lead to the development of more selective drugs.
View Article and Find Full Text PDFDNA methylation and histone tail modifications are interrelated mechanisms involved in a wide range of biological processes, and disruption of this crosstalk is linked to diseases such as acute myeloid leukemia. In addition, DNA methyltransferase 3A (DNMT3A) activity is modulated by several regulatory proteins, including p53 and thymine DNA glycosylase (TDG). However, the relative role of histone tails and regulatory proteins in the simultaneous coordination of DNMT3A activity remains obscure.
View Article and Find Full Text PDFDNA adenine methylation by Caulobacter crescentus Cell Cycle Regulated Methyltransferase (CcrM) is an important epigenetic regulator of gene expression. The recent CcrM-DNA cocrystal structure shows the CcrM dimer disrupts four of the five base pairs of the (5'-GANTC-3') recognition site. We developed a fluorescence-based assay by which Pyrrolo-dC tracks the strand separation event.
View Article and Find Full Text PDFA myriad of protein partners modulate the activity of the human DNA methyltransferase 3A (DNMT3A), whose interactions with these other proteins are frequently altered during oncogenesis. We show here that the tumor suppressor p53 decreases DNMT3A activity by forming a heterotetramer complex with DNMT3A. Mutational and modeling experiments suggested that p53 interacts with the same region in DNMT3A as does the structurally characterized DNMT3L.
View Article and Find Full Text PDFThe Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM) methylates the adenine of hemimethylated GANTC after replication. Here we present the structure of CcrM in complex with double-stranded DNA containing the recognition sequence. CcrM contains an N-terminal methyltransferase domain and a C-terminal nonspecific DNA-binding domain.
View Article and Find Full Text PDFTracking intracellular proteins in live cells has many challenges. The most widely used method, fluorescent protein fusions, can track proteins in their native cellular environment and has led to significant discoveries in cell biology. Fusion proteins add steric bulk to the target protein and can negatively affect native protein function.
View Article and Find Full Text PDFRecently derived steady-state differential rate laws for the catalytic turnover of molecules containing two substrate sites are reformulated as integrated rate laws. The analysis applies to a broad class of Markovian dynamic models, motivated by the varied and often complex mechanisms associated with DNA modifying enzymes. Analysis of experimental data for the methylation kinetics of DNA by Dam (DNA adenine methyltransferase) is drastically improved through the use of integrated rate laws.
View Article and Find Full Text PDFAlthough new cancer therapeutics are discovered at a rapid pace, lack of effective means of delivery and cancer chemoresistance thwart many of the promising therapeutics. We demonstrate a method that confronts both of these issues with the light-activated delivery of a Bcl-2 functional converting peptide, NuBCP-9, using hollow gold nanoshells. This approach has shown not only to increase the efficacy of the peptide 30-fold in vitro but also has shown to reduce paclitaxel resistant H460 lung xenograft tumor growth by 56.
View Article and Find Full Text PDFPlasmon-resonant nanoparticles provide unprecedented spatiotemporal control over the release of diverse cargoes into cells. Here we compare the loading, release and internalization efficiencies, and effectiveness of post transcriptional gene silencing of hollow gold nanoshells, hollow gold nanocages, and gold nanorods with plasmons tuned to absorb near-infrared light at 800 nm. The hollow gold nanoshells can be loaded with up to three times more siRNA cargo compared to nanocages and nanorods; however, nanorods exhibit the highest efficiency of release of attached siRNA strands when exposed to pulsed 800 nm laser excitation.
View Article and Find Full Text PDFEukaryotic DNA methylation prevents genomic instability by regulating the expression of oncogenes and tumor-suppressor genes. The negative effects of dysregulated DNA methylation are highlighted by a strong correlation between mutations in the DNA methyltransferase gene α () and poor prognoses among acute myeloid leukemia (AML) patients. We show here that clinically observed mutations dramatically alter enzymatic activity, including mutations that lead to 6-fold hypermethylation and 3-fold hypomethylation of the human ( or ) gene promoter.
View Article and Find Full Text PDFBiochem Mol Biol Educ
January 2019
We investigate the effectiveness of an active learning curriculum designed for an upper division Biochemistry series at a large, public research university. The goal was to determine how effective this format was when compared to a parallel conventional course, and to see if the active learning series can be run with limited resources (one instructor, one teaching assistant). The study involved 160 students in the first quarter and 92 students in the second quarter.
View Article and Find Full Text PDFTwo DNA methyltransferases, Dam and β-class cell cycle-regulated DNA methyltransferase (CcrM), are key mediators of bacterial epigenetics. CcrM from the bacterium (CcrM , methylates adenine at 5'-GANTC-3') displays 10-10-fold sequence discrimination against noncognate sequences. However, the underlying recognition mechanism is unclear.
View Article and Find Full Text PDFA light-activated genome editing platform based on the release of enzymes from a plasmonic nanoparticle carrier when exposed to biocompatible near-infrared light pulses is described. The platform relies on the robust affinity of polyhistidine tags to nitrilotriacetic acid in the presence of copper which is attached to double-stranded nucleic acids self-assembled on the gold nanoparticle surface. A protein fusion of the Cre recombinase containing a TAT internalization peptide sequence to achieve endosomal localization is also employed.
View Article and Find Full Text PDFA detailed analysis is carried out on both published experimental results and new experiments for the methylation kinetics of two-site DNA substrates (with site separations between 100 and 800 bp) catalyzed by bacterial DNA adenine methyltransferase (Dam). A previously reported rate enhancement for the second methylation event (relative to that of the first methylation) is shown to result from elevated substrate specificity for singly methylated DNA over that of unmethylated DNA and not processive turnover of both sites by the same copy of Dam. An elementary model is suggested that cleanly fits the experimental data over a broad range of intersite separations.
View Article and Find Full Text PDFCaulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the K, k, k, and K for single-stranded and hemimethylated substrates, revealing discrimination of 10-fold for noncognate sequences.
View Article and Find Full Text PDFWe report a universal strategy for functionalizing near-infrared light-responsive nanocarriers with both a peptide "cargo" and an orthogonal cell-penetrating peptide. Modularity of both the cargo and the internalization peptide attachment is an important feature of these materials relying on the robust affinity of polyhistidine tags to nitrilotriacetic acid in the presence of nickel as well as the affinity of biotin labeled peptides to streptavidin. Attachment to the gold surface uses thiol-labeled scaffolds terminated with the affinity partner.
View Article and Find Full Text PDFWater plays important but poorly understood roles in the functions of most biomolecules. We are interested in understanding how proteins use diverse search mechanisms to locate specific sites on DNA; here we present a study of the role of closely associated waters in diverse translocation mechanisms. The bacterial DNA adenine methyltransferase, Dam, moves across large segments of DNA using an intersegmental hopping mechanism, relying in part on movement through bulk water.
View Article and Find Full Text PDFThe human DNA methyltransferase 3A (DNMT 3A) is responsible for de novo epigenetic regulation, which is essential for mammalian viability and implicated in diverse diseases. All DNA cytosine C5 methyltransferases follow a broadly conserved catalytic mechanism. We investigated whether C5 β-elimination contributes to the rate-limiting step in catalysis by DNMT3A and the bacterial M.
View Article and Find Full Text PDFA new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
View Article and Find Full Text PDFA steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g.
View Article and Find Full Text PDFWe demonstrate modulation of nitric oxide release in solution and in human prostate cancer cells from a thiol functionalized cupferron (TCF) absorbed on hollow gold nanoshells (HGNs) using near-infrared (NIR) light. NO release from the TCF-HGN conjugates occurs through localized surface heating due to NIR excitation of the surface plasmon. Specific HGN targeting is achieved through cell surface directed peptides, and excitation with tissue penetrating NIR light provides unprecedented spatio-temporal control of NO delivery to biological targets.
View Article and Find Full Text PDF