Publications by authors named "Norbert Prenzel"

The epidermal growth factor receptor (EGFR) plays a key role in the regulation of important cellular processes under normal and pathophysiological conditions such as cancer. In human mammary carcinomas the EGFR is involved in regulating cell growth, survival, migration and metastasis and its activation correlates with the lack of response in hormone therapy. Here, we demonstrate in oestrogen receptor-positive and -negative human breast cancer cells and primary mammary epithelial cells a cross-communication between G protein-coupled receptors (GPCRs) and the EGFR.

View Article and Find Full Text PDF

Mammalian cells respond to environmental stress by activating a variety of protein kinases critical for cellular signal transmission, such as the epidermal growth factor receptor (EGFR) tyrosine kinase and different members of the mitogen-activated protein kinase (MAPK) family. EGFR activation by stress stimuli was previously thought to occur independently of stimulation by extracellular ligands. Here, we provide evidence that osmotic and oxidative stresses induce a metalloprotease activity leading to cell surface cleavage of pro-heparin-binding EGF (pro-HB-EGF) and subsequent EGFR activation.

View Article and Find Full Text PDF

Transactivation of the epidermal growth factor receptor (EGFR) represents the paradigm for cross-talk between G protein-coupled receptors (GPCRs) and receptor tyrosine kinase signaling pathways. In a variety of squamous cell carcinoma cell lines of the head and neck (HNSCCs), we found that treatment with the GPCR agonists lysophosphatidic acid (LPA), bradykinin, thrombin, and carbachol results in rapid tyrosine phosphorylation of the EGFR. In these tumor cells, signal transactivation of the EGFR and the oncoprotein HER2/neu is critically dependent on metalloprotease activity.

View Article and Find Full Text PDF