Publications by authors named "Norbert Peyerimhoff"

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range = 1-103 is presented within the software . Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions.

View Article and Find Full Text PDF

Correcting for anomalous dispersion is part of any refinement of an X-ray dif-fraction crystal structure determination. The procedure takes the inelastic scattering in the diffraction experiment into account. This X-ray absorption effect is specific to each chemical compound and is particularly sensitive to radiation energies in the region of the absorption edges of the elements in the compound.

View Article and Find Full Text PDF

When calculating derivatives of structure factors, there is one particular term (the derivatives of the atomic form factors) that will always be zero in the case of tabulated spherical atomic form factors. What happens if the form factors are non-spherical? The assumption that this particular term is very close to zero is generally made in non-spherical refinements (for example, implementations of Hirshfeld atom refinement or transferable aspherical atom models), unless the form factors are refinable parameters (for example multipole modelling). To evaluate this general approximation for one specific method, a numerical differentiation was implemented within the NoSpherA2 framework to calculate the derivatives of the structure factors in a Hirshfeld atom refinement directly as accurately as possible, thus bypassing the approximation altogether.

View Article and Find Full Text PDF

The relationship between the structure and the properties of a drug or material is a key concept of chemistry. Knowledge of the three-dimensional structure is considered to be of such importance that almost every report of a new chemical compound is accompanied by an X-ray crystal structure - at least since the 1970s when diffraction equipment became widely available. Crystallographic software of that time was restricted to very limited computing power, and therefore drastic simplifications had to be made.

View Article and Find Full Text PDF

We study the relationship between the noise in the vertex coordinates of a triangle mesh and normal noise. First, we compute in closed form the expectation for the angle θ between the new and the old normal when uniform noise is added to a single vertex of a triangle. Next, we propose and experimentally validate an approximation and lower and upper bounds for θ when uniform noise is added to all three vertices of the triangle.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona44i51okv1l6hegi54dshv78d7fsn9qg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once