Micromachines (Basel)
October 2024
The bacterium is investigated as a model organism for the cultivation and separation of ethanol as a product by in situ extraction in continuous flow microreactors. The considered microreactor is the Coiled Flow Inverter (CFI), which consists of a capillary coiled onto a support structure. Like other microreactors, the CFI benefits from a high surface-to-volume ratio, which enhances mass and heat transfer.
View Article and Find Full Text PDFAs scientific digitization advances it is imperative ensuring data is Findable, Accessible, Interoperable, and Reusable (FAIR) for machine-processable data. Ontologies play a vital role in enhancing data FAIRness by explicitly representing knowledge in a machine-understandable format. Research data in catalysis research often exhibits complexity and diversity, necessitating a respectively broad collection of ontologies.
View Article and Find Full Text PDFThe transfer from batch to flow chemistry is often based on commercial microfluidic equipment, such as costly complete reactor systems, which cannot be easily tailored to specific requirements of technologies such as DNA-encoded library technology (DELT), in particular for increasingly important photochemical reactions. Customized photoreactor concepts using rapid prototyping technology offer a modular, flexible, and affordable design that allows for adaptation to various applications. In order to validate the prototype reactors, a photochemical pinacol coupling reaction at 368 nm was conducted to demonstrate the transfer from batch to flow chemistry.
View Article and Find Full Text PDFThe knowledge of product particle size distribution (PSD) in crystallization processes is of high interest for the pharmaceutical and fine chemical industries, as well as in research and development. Not only can the efficiency of crystallization/production processes and product quality be increased but also new equipment can be qualitatively characterized. A large variety of analytical methods for PSDs is available, most of which have underlying assumptions and corresponding errors affecting the measurement of the volume of individual particles.
View Article and Find Full Text PDFDNA-encoded library technologies require high-throughput, compatible, and well automatable platforms for chemistry development, building block rehearsal, and library synthesis. An affinity-based process using Watson-Crick interactions was developed that enables purification of DNA-tagged compounds from complex reaction mixtures. The purification relies on a single-stranded DNA-oligonucleotide, called , which was covalently coupled to an agarose matrix and to which a DNA-compound conjugate from a DNA-encoded library (DEL) reaction can be reversibly annealed to.
View Article and Find Full Text PDFLaboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions.
View Article and Find Full Text PDFIn process analytics, the applicability of Raman spectroscopy is restricted by high excitation intensities or the long integration times required. In this work, a novel Raman system was developed to minimize photon flux losses. It allows specific reduction of spectral resolution to enable the use of Raman spectroscopy for real-time analytics when strongly increased sensitivity is required.
View Article and Find Full Text PDFNovel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties.
View Article and Find Full Text PDFMicrostructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.
View Article and Find Full Text PDF