Publications by authors named "Norbert Keil"

Mass-deployable implementations for quantum communication require compact, reliable, and low-cost hardware solutions for photon generation, control and analysis. We present a fiber-pigtailed hybrid photonic circuit comprising nonlinear waveguides for photon-pair generation and a polymer interposer reaching of pump suppression and photon separation based on a polarizing beam splitter with polarization extinction ratio. The optical stability of the hybrid assembly enhances the quality of the entanglement, and the efficient background suppression and photon routing further reduce accidental coincidences.

View Article and Find Full Text PDF

A lab-on-a-chip multichannel sensing platform for biomedical analysis based on optical silicon nitride (SiNx) microring-resonators (MRR) was established. The resonators were surface functionalized and finally combined with a microfluidic chamber for validation using an avidin-biotin ligand-binding assay. The results with a limit of detection (LOD) of 2.

View Article and Find Full Text PDF

For wireless networks beyond 5G, directivity and reconfigurability of antennas are highly relevant. Therefore, we propose a linear antenna array based on photodiodes operating at 300 GHz, and an optical phased array based on polymer waveguides to orchestrate the antennas. Due to its low thermal conductivity and high thermo-optical coefficient, the polymer chip enables highly efficient and crosstalk-free phase shifting.

View Article and Find Full Text PDF

We fabricated a simple sensor system for qualitative analysis of glycan-mediated interactions. Our main aim was to establish a ronbbust system that allowes drop-tests without complex fluidics. The test system should be usable in routine analytics in the future and bear sufficient sensitivity to detect binding events in the nanomolar range.

View Article and Find Full Text PDF

We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.

View Article and Find Full Text PDF

An external cavity laser is demonstrated based on the hybrid integration of an InP-based gain element, a half-wave plate, and thermally drivable polymer waveguide circuits. The laser has one oscillation region but two outputs for TE and TM emissions. The central wavelength can be tuned 20 nm at 20 mW heater electrical power.

View Article and Find Full Text PDF

An optical filter based on all-polymer grating-assisted directional coupler is demonstrated. The wavelength tuning is differentially driven. The heater-electrodes created on the sidewalls of the polymer ridge can either blue- or red-shift the central wavelength.

View Article and Find Full Text PDF

A grating-assisted heterogeneous waveguide coupler is designed, fabricated, and demonstrated on a polymer platform. The parallel silicon nitrite core and polymer core are horizontally placed with vertical center alignment accuracy of ±5 nm. The coupler is differentially thermally tunable.

View Article and Find Full Text PDF

We demonstrate the first integrated transmitter for serial 100 Gb/s NRZ-OOK modulation in datacom and telecom applications. The transmitter relies on the use of an electro-optic polymer modulator and the hybrid integration of an InP laser diode and InP-DHBT electronics with the polymer board. Evaluation is made at 80 and 100 Gb/s through eye-diagrams and BER measurements using a receiver module that integrates a pin-photodiode and an electrical 1:2 demultiplexer.

View Article and Find Full Text PDF

A dual-quadrature coherent receiver based on a polymer planar lightwave circuit (PLC) is presented. This receiver comprises two separate optical 90°-hybrid chips made of polymer waveguides and hybridly integrated with InGaAs/InP photodiode (PD) arrays. The packaged receiver was successfully operated in 112 Gbit/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.

View Article and Find Full Text PDF

We report a direct DPSK receiver based on polymer planar lightwave circuit technology, which incorporates a 2x25 GHz photodiode (PD) array hybridly integrated via 45° mirrors. In this direct DPSK receiver, a half-wave plate and heating electrodes are implemented to eliminate the polarization-dependent frequency-shift (PDFS) of the delay-line interferometer (DLI). By applying a proper heating current, a residual PDFS of practically zero at 1550 nm and within ±125 MHz was achieved over the full C-band.

View Article and Find Full Text PDF