Background/objectives: Acute myocardial infarction (AMI), characterized by irreversible heart muscle damage and impaired cardiac function caused by myocardial ischemia, is a leading cause of global mortality. The damage associated with reperfusion, particularly mitochondrial dysfunction and reactive oxygen species (ROS) formation, has emerged as a crucial factor in the pathogenesis of cardiac diseases, leading to the recognition of mitochondrial proteins as potential markers for myocardial damage. This study aimed to identify differentially expressed proteins based on the type of cardiac injury, in particular those with and without reperfusion.
View Article and Find Full Text PDFHuman monocytes can be subdivided into phenotypically and functionally different classical, intermediate and non-classical monocytes according to the cell surface expression of CD14 and CD16. A precise identification and characterisation of monocyte subsets is necessary to unravel their role in inflammatory diseases. Here, we compared three different flow cytometric strategies (A-C) and found that strategy C, which included staining against CD11b, HLA-DR, CD14 and CD16, followed by several gating steps, most reliably identified monocyte subtypes in blood samples from healthy volunteers and from patients with stable coronary heart disease (CHD) or ST-elevation myocardial infarction (STEMI).
View Article and Find Full Text PDFBackground: Aortic valve disease (AVD) is associated with high mortality and morbidity. To date, there is no pharmacological therapy available to prevent AVD progression. Because valve calcification is the hallmark of AVD and S1P (sphingosine-1-phosphate) plays an important role in osteogenic signaling, we examined the role of S1P signaling in aortic stenosis disease.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2024
Here, we provide a concise overview of recent developments in the identification of immunogenic epitopes in human apolipoprotein B-100 for immunization against atherosclerotic cardiovascular disease. Major steps forward toward a clinical application of vaccines include the design of humanized mouse models, tetramer-based identification of antigen-specific T cells, and novel analysis tools, such as single-cell RNA sequencing and cytometry by time of flight, to assess temporal and spatial changes in immune cells in atherosclerotic cardiovascular disease.
View Article and Find Full Text PDFAims: Non-ischaemic cardiomyopathy (NICMP), an incurable disease terminating in systolic heart failure (heart failure with reduced ejection fraction [HFrEF]), causes immune activation, however anti-inflammatory treatment strategies so far have failed to alter the course of this disease. Myeloperoxidase (MPO), the principal enzyme in neutrophils, has cytotoxic, pro-fibrotic and nitric oxide oxidizing effects. Whether MPO inhibition ameliorates the phenotype in NICMP remains elusive.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia and characterized by extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tau tangles and neurodegeneration. Over 80 % of AD patients also exhibit cerebral amyloid angiopathy (CAA). CAA is a cerebrovascular disease caused by deposition of Aβ in the walls of cerebral blood vessels leading to vessel damage and impairment of normal blood flow.
View Article and Find Full Text PDFMyasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG.
View Article and Find Full Text PDFBackground: An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Although its pathogenesis is still poorly understood, recent evidence suggests that AAA displays autoimmune disease characteristics. Particularly, T cells responding to AAA-related antigens in the aortic wall may contribute to an initial immune response.
View Article and Find Full Text PDFBackground: Smoking, alcohol abuse, and hypertension are - among others, potential risk factors for cardiovascular diseases. These risk factors generate oxidative stress and cause oxidative stress-induced DNA damage, resulting in cellular senescence and senescence-associated secretory phenotype (SASP). The SASP factors in feed-forward response exacerbate inflammation and cause tissue remodeling, resulting in atherosclerotic plaque formation and rupture.
View Article and Find Full Text PDFBackground: In acute myocardial infarction and heart failure, anemia is associated with adverse clinical outcomes. Endothelial dysfunction (ED) is characterized by attenuated nitric oxide (NO)-mediated relaxation responses which is poorly studied in chronic anemia (CA). We hypothesized that CA is associated with ED due to increased oxidative stress in the endothelium.
View Article and Find Full Text PDFInflammaging is a potential risk factor for cardiovascular diseases. It results in the development of thrombosis and atherosclerosis. The accumulation of senescent cells in vessels causes vascular inflammaging and contributes to plaque formation and rupture.
View Article and Find Full Text PDFBackground: Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) acts as a transcriptional coactivator and regulates mitochondrial function. Various isoforms are generated by alternative splicing and differentially regulated promoters. In the heart, total PGC-1α deficiency knockout leads to dilatative cardiomyopathy, but knowledge on the complexity of cardiac isoform expression of PGC-1α remains sparse.
View Article and Find Full Text PDFInflammation is a key component in the pathogenesis of cardiovascular diseases causing a significant burden of morbidity and mortality worldwide. Recent research shows that mammalian target of rapamycin (mTOR) signaling plays an important role in the general and inflammation-driven mechanisms that underpin cardiovascular disease. mTOR kinase acts prominently in signaling pathways that govern essential cellular activities including growth, proliferation, motility, energy consumption, and survival.
View Article and Find Full Text PDFAims: CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signalling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-tumour necrosis factor receptor associated factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms.
View Article and Find Full Text PDFPatients with acute ischemic stroke (AIS) present an increased incidence of systemic inflammatory response syndrome and release of Troponin T coinciding with cardiac dysfunction. The nature of the cardiocirculatory alterations remains obscure as models to investigate systemic interferences of the brain-heart-axis following AIS are sparse. Thus, this study aims to investigate acute cardiocirculatory dysfunction and myocardial injury in mice after reperfused AIS.
View Article and Find Full Text PDF