Publications by authors named "Norbert Esser"

TiCT MXenes have typically a mixed surface termination of oxygen, hydroxyl and fluorine groups (T). In this work, we investigate the influence of the surface termination on the vibrational properties of TiCT by performing thermal desorption and Raman spectroscopy in ultra-high-vacuum (UHV). Significant changes in the Raman spectra occur after annealing above 600 °C, correlated with the desorption of approximately 80% of the fluorine termination, as confirmed by mass spectrometry and X-ray photoemission spectra.

View Article and Find Full Text PDF

The adsorption of N-heterocyclic olefins (NHOs) on silicon is investigated in a combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory study. We find that both of the studied NHOs bind covalently, with ylidic character, to the silicon adatoms of the substrate and exhibit good thermal stability. The adsorption geometry strongly depends on the N-substituents: for large N-substituents, an upright adsorption geometry is favored, while a flat-lying geometry is found for the NHO with smaller wingtips.

View Article and Find Full Text PDF

The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids.

View Article and Find Full Text PDF

The ultraviolet resonance Raman (UVRR) spectra of the two proteins bovine serum albumin (BSA) and human serum albumin (HSA) in an aqueous solution are compared with the aim to distinguish between them based on their very similar amino acid composition and structure and to obtain signals from tryptophan that has only very few residues. Comparison of the protein spectra with solutions of tryptophan, tyrosine, and phenylalanine in comparative ratios as in the two proteins shows that at an excitation wavelength of 220 nm, the spectra are dominated by the strong resonant contribution from these three amino acids. While the strong enhancement of two and one single tryptophan residue in BSA and HSA, respectively, results in pronounced bands assigned to fundamental vibrations of tryptophan, its weaker overtones and combination bands do not play a major role in the spectral range above 1800 cm.

View Article and Find Full Text PDF

The luminescence of InGaN nanowires (NWs) is frequently reported with large red-shifts as compared to the theoretical value expected from the average In content. Both compositional fluctuations and radial built-in fields were considered accountable for this effect, depending on the size, structure, composition, and surrounding medium of the NWs. In the present work, the emission properties of InGaN/GaN NWs grown by plasma-assisted molecular beam epitaxy are investigated in a comprehensive study combining ultraviolet-Raman and photoluminescence spectroscopy (PL) on vertical arrays, polarization-dependent PL on bundles of a few NWs, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and calculations of the band profiles.

View Article and Find Full Text PDF

Two-dimensional rare-earth silicide layers deposited on silicon substrates have been intensively investigated in the last decade, as they can be exploited both as Ohmic contacts or as photodetectors, depending on the substrate doping. In this study, we characterize rare-earth silicide layers on the Si(111) surface by a spectroscopic analysis. In detail, we combine Raman and reflectance anisotropy spectroscopy (RAS) with first-principles calculations in the framework of the density functional theory.

View Article and Find Full Text PDF

N-Heterocyclic carbenes (NHCs) are promising modifiers and anchors for surface functionalization and offer some advantages over thiol-based systems. Because of their strong binding affinity and high electron donation, NHCs can dramatically change the properties of the surfaces to which they are bonded. Highly ordered NHC monolayers have so far been limited to metal surfaces.

View Article and Find Full Text PDF

The ultraviolet resonance Raman spectra of the adenine-containing enzymatic redox cofactors nicotinamide adenine dinucleotide and flavin adenine dinucleotide in aqueous solution of physiological concentration are compared with the aim of distinguishing between them and their building block adenine in potential co-occurrence in biological materials. At an excitation wavelength of 266 nm, the spectra are dominated by the strong resonant contribution from adenine; nevertheless, bands assigned to vibrational modes of the nicotinamide and the flavin unit are found to appear at similar signal strength. Comparison of spectra measured at pH 7 with data obtained pH 10 and pH 3 shows characteristic changes when pH is increased or lowered, mainly due to deprotonation of the flavin and nicotinamide moieties, and protonation of the adenine, respectively.

View Article and Find Full Text PDF

In the last few decades, the use of plasmonics in vibrational spectroscopy has expanded the scope of (bio)analytical investigations. Nevertheless, there is a demand for a combined platform that can be simultaneously efficient for Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Absorption (SEIRA). Here, we present a solution on the basis of a plasmonic Ag nanoparticle layer with a thickness gradient.

View Article and Find Full Text PDF

We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC = 28 nM) that effectively inhibits proliferation of A2780 ovarian cells (IC = 13 nM) in lipid-reduced serum (LRS).

View Article and Find Full Text PDF

In this work, the microfluidic-assisted synthesis of copper-tetracyanoquinodimethane (Cu-TCNQ) nanostructures in an ambient environment is reported for the first time. A two-layer microfluidic device comprising parallel actuated microchambers was used for the synthesis and enabled excellent fluid handling for the continuous and multiple chemical reactions in confined ultrasmall chambers. Different precautions were applied to ensure the reduction state of copper (Cu) for the synthesis of Cu-TCNQ charge-transfer compounds.

View Article and Find Full Text PDF

Gas sensors are very important in several fields like gas monitoring, safety and environmental applications. In this approach, a new gas sensing concept is investigated which combines the powerful adsorption probability of metal oxide conductive sensors (MOS) with an optical ellipsometric readout. This concept shows promising results to solve the problems of cross sensitivity of the MOS concept.

View Article and Find Full Text PDF

The Si(111)-5×2-Au surface is increasingly of interest because it is one of the rare atomic chain systems with quasi-one-dimensional properties. For the deposition of 0.7 monolayers of Au, these chains are metallic.

View Article and Find Full Text PDF

Label-free biosensors based on in situ formed and functionalized TTF-Au wires were developed using an integrated microfluidic system. By applying different modification protocols, TTF-Au wires were successfully used for sensitive label-free detection of catecholamines and human IgG by Raman spectroscopy.

View Article and Find Full Text PDF

Background/aim: Sequential treatment with targeted agents is standard of care for patients with metastatic renal cell carcinoma (mRCC). However, clinical data directly comparing treatment outcomes with a mammalian target of rapamycin inhibitor or a vascular endothelial growth factor-targeted agent in the second-line setting are lacking. We evaluated sequential treatment in a syngeneic, orthotopic mouse model of mRCC.

View Article and Find Full Text PDF

The insulin-like growth factor I receptor (IGF1-R) system has long been implicated in cancer and is a promising target for tumor therapy. Besides in vitro screening assays, the discovery of specific inhibitors against IGF-1R requires relevant cellular models, ideally applicable to both in vitro and in vivo studies. With this aim in mind, the authors generated an inducible cell line using the tetracycline-responsive gene expression system to mimic the effects of therapeutic inhibition of the IGF-1R both in vitro and on established tumors in vivo.

View Article and Find Full Text PDF

Background And Purpose: Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors.

View Article and Find Full Text PDF

The Notch signaling pathway is essential for normal development due to its role in control of cell differentiation, proliferation and survival. It is also critically involved in tumorigenesis and cancer progression. A key enzyme in the activation of Notch signaling is the gamma-secretase protein complex and therefore, gamma-secretase inhibitors (GSIs)--originally developed for Alzheimer's disease--are now being evaluated in clinical trials for human malignancies.

View Article and Find Full Text PDF

The most fatal outcomes of prostate carcinoma (PCa) result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting.

View Article and Find Full Text PDF

Background: Cancer stem cells are thought to play a pivotal role in tumor maintenance, metastasis, tumor therapy resistance and relapse. Hence, the development of methods for non-invasive in vivo detection of cancer stem cells is of great importance.

Methodology/principal Findings: Here, we describe successful in vivo detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities.

View Article and Find Full Text PDF

In developed countries, prostate cancer is the third most common cause of death from cancer in men. Unfortunately, whilst accumulating clinical data have suggested that taxanes may prolong the survival in a subset of men with prostate carcinoma, the dose and duration of administration of these drugs are limited by their significant systemic toxicities due to a lack of tumour selectivity. In an attempt to improve both the water solubility and tumour-targeting properties of paclitaxel (Taxol®), we set out to develop a water soluble paclitaxel prodrug that is activated specifically by prostate-specific antigen (PSA) which is almost exclusively expressed in prostate tissue and prostate carcinoma making it an ideal molecular target for prodrug strategies.

View Article and Find Full Text PDF

The pH-dependent switching of a poly(acrylic acid) (PAA) polyelectrolyte brush was investigated in situ using infrared spectroscopic ellipsometry (IRSE). The brush was synthesized by a "grafting to" procedure on silicon substrate with a native oxide layer. The overall thickness of the PAA brush in the dry state was approximately 5 nm.

View Article and Find Full Text PDF

Cediranib is a highly potent and selective vascular endothelial growth factor (VEGF) signaling inhibitor with activity against all three VEGF receptors (VEGFRs) that inhibits angiogenesis and growth of human tumor xenografts in vivo. The present study evaluated the antitumor and antiangiogenic activity of cediranib in the clinically relevant, murine renal cell carcinoma (RENCA) model and its biological response using VEGF and sVEGFR-2 as biomarkers. Mice were treated with cediranib (5 mg/kg/d p.

View Article and Find Full Text PDF

Auron-Misheil-Therapy (AMT) is a defined but unique combination of approved pharmaceuticals. It consists of insulin, chlorpheniramine and an aqueous camomile extract, and it has been successfully applied clinically in late-stage cancer patients. The purpose of this study was to elucidate the anti-tumor efficacy of AMT in a validated murine renal cell carcinoma animal model (RENCA).

View Article and Find Full Text PDF

This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures.

View Article and Find Full Text PDF