produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPI). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.
View Article and Find Full Text PDFStreptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins.
View Article and Find Full Text PDFMicrobial transglutaminase (mTG) has recently emerged as a powerful tool for antibody engineering. In nature, it catalyzes the formation of amide bonds between glutamine side chains and primary amines. Being applied to numerous research fields from material sciences to medicine, mTG enables efficient site-specific conjugation of molecular architectures that possess suitable recognition motifs.
View Article and Find Full Text PDFThe protein cross-linking enzyme transglutaminase from Streptomyces mobaraensis (MTG) is frequently used to modify therapeutic proteins. In order to reveal the binding mode of glutamine donor substrates, we have now crystallized MTG covalently linked to large inhibitory peptides. A series of peptide structures were examined but DIPIGSKMTG, which was chloroacetylated at serine, was the only inhibitory molecule that resulted in an interpretable density map.
View Article and Find Full Text PDFTransglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for numerous industrial applications. Recombinant production requires proteolytic activation of the zymogen. The study provides a convenient procedure for the preparation of the transglutaminase-activating metalloprotease (TAMP) in Escherichia coli.
View Article and Find Full Text PDFTransglutaminase from Streptomyces mobaraensis (MTG) has become a powerful tool to covalently and highly specifically link functional amines to glutamine donor sites of therapeutic proteins. However, details regarding the mechanism of substrate recognition and interaction of the enzyme with proteinaceous substrates still remain mostly elusive. We have determined the crystal structure of the Streptomyces papain inhibitory protein (SPI ), a substrate of MTG, to study the influence of various substrate amino acids on positioning glutamine to the active site of MTG.
View Article and Find Full Text PDF