Publications by authors named "Norbert Bergner"

Staphylococcus aureus is one of the most frequent human pathogens that can also act as a facultative intracellular pathogen causing infections that are extremely difficult to treat. Only little is known about the pathogen's intracellular adaptation strategies to escape the host's response. Here, we present an advanced Raman-based imaging approach providing high quality false-color images to specifically identify intracellular S.

View Article and Find Full Text PDF

Hyperspectral unmixing is an unsupervised algorithm to calculate a bilinear model of spectral endmembers and abundances of components from Raman images. Thirty-nine Raman images were collected from six glioma brain tumor specimens. The tumor grades ranged from astrocytoma WHO II to glioblastoma multiforme WHO IV.

View Article and Find Full Text PDF

Infrared spectroscopy enables the identification of tissue types based on their inherent vibrational fingerprint without staining in a nondestructive way. Here, Fourier transform infrared microscopic images were collected from 22 brain metastasis tissue sections of bladder carcinoma, lung carcinoma, mamma carcinoma, colon carcinoma, prostate carcinoma and renal cell carcinoma. The scope of this study was to distinguish the infrared spectra of carcinoma from normal tissue and necrosis and to use the infrared spectra of carcinoma to determine the primary tumor of brain metastasis.

View Article and Find Full Text PDF

Spectroscopy-based imaging techniques can provide useful biochemical information about tissue samples. Here, we employ Raman and Fourier transform infrared (IR) imaging to characterize composition and constitution of atherosclerotic plaques of rabbits, fed with a high cholesterol diet. The results were compared with conventional light microscopy after staining with hematoxylin eosin, and elastica van Gieson.

View Article and Find Full Text PDF

Raman spectroscopy is a promising tool towards biopsy under vision as it provides label-free image contrast based on intrinsic vibrational spectroscopic fingerprints of the specimen. The current study applied the spectral unmixing algorithm vertex component analysis (VCA) to probe cell density and cell nuclei in Raman images of primary brain tumor tissue sections. Six Raman images were collected at 785 nm excitation that consisted of 61 by 61 spectra at a step size of 2 micrometers.

View Article and Find Full Text PDF

Single band coherent anti-Stokes Raman scattering (CARS) microscopy is one of the fastest implementation of nonlinear vibrational imaging allowing for video-rate image acquisition of tissue. This is due to the large Raman signal in the C-H-stretching region. However, the chemical specificity of such images is conventionally assumed to be low.

View Article and Find Full Text PDF

Raman microspectroscopic imaging provides molecular contrast in a label-free manner with subcellular spatial resolution. These properties might complement clinical tools for diagnosis of tissue and cells in the future. Eight Raman spectroscopic images were collected with 785 nm excitation from five non-dried brain specimens immersed in aqueous buffer.

View Article and Find Full Text PDF

Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens.

View Article and Find Full Text PDF

We study the physics of a new type of subwavelength nanocavities. They are based on U-shaped metal-insulator-metal waveguides supporting the excitation of surface plasmon polaritons. The nanocavity arrays are excited by plane waves at either a normal or oblique incidence.

View Article and Find Full Text PDF