Publications by authors named "Norasikin Ahmad-Ludin"

Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method.

View Article and Find Full Text PDF

Significant progress has been made over the years to improve the stability and efficiency of rapidly evolving tin-based perovskite solar cells (PSCs). One powerful approach to enhance the performance of these PSCs is through compositional engineering techniques, specifically by incorporating a mixed cation system at the A-site and B-site structure of the tin perovskite. These approaches will pave the way for unlocking the full potential of tin-based PSCs.

View Article and Find Full Text PDF

The obstacle to the industrialization of perovskite solar cells (PSC) technology lies in their stability. This work rationalizes the PSC design with the employment of 2D-MoS as the hybrid hole transport layer (HTL). MoS was selected due to its unique optoelectronic and mechanical properties that could enhance hole extraction and thus boost the performance and stability of PSC devices.

View Article and Find Full Text PDF

The silicon heterojunction solar cell (SHJ) is considered the dominant state-of-the-art silicon solar cell technology due to its excellent passivation quality and high efficiency. However, SHJ's light management performance is limited by its narrow optical absorption in long-wave near-infrared (NIR) due to the front, and back tin-doped indium oxide (ITO) layer's free carrier absorption and reflection losses. Despite the light-trapping efficiency (LTE) schemes adopted by SHJ in terms of back surface texturing, the previous investigations highlighted the ITO layer as a reason for an essential long-wavelength light loss mechanism in SHJ solar cells.

View Article and Find Full Text PDF

COVID-19 has had a significant impact on the global demand and consumption of energy. In particular, the effect of the lockdown measures due to the COVID-19 pandemic can be seen directly in the reduced energy consumption in educational buildings. Therefore, the objective of this study is to assess the impact of COVID-19 on the electricity use in university buildings.

View Article and Find Full Text PDF

The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances.

View Article and Find Full Text PDF

This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.

View Article and Find Full Text PDF