Background And Aims: we previously reported in studies on organoid-cultured bovine pulmonary arteries that pulmonary hypertension (PH) conditions of exposure to hypoxia or endothelin-1 caused a loss of a cartilage oligomeric matrix protein (COMP) stabilization of bone morphogenetic protein receptor-2 (BMPR2) function, a known key process contributing to pulmonary hypertension development. Based on subsequent findings, these conditions were associated with an extracellular superoxide-mediated increase in matrix metalloproteinase 9 (MMP-9) expression. We investigated if this contributed to PH development using mice deficient in MMP9.
View Article and Find Full Text PDFBackground: The appropriate alignment of the lower teeth is indicated by the Curve of Spee (COS), which can be observed in the sagittal profile view of human skulls. Graf Von Spee made the initial observation on this occlusal curvature. Through this systematic review and meta-analysis, we evaluated studies that looked at how COS affected masticatory activities.
View Article and Find Full Text PDFThis study examines if heme biosynthesis-associated iron metabolism is regulated in pulmonary arteries by endothelin-1 (ET1) potentially through modulating cartilage oligomeric matrix protein (COMP) availability. Our studies in organoid-cultured endothelium-rubbed bovine pulmonary arteries (BPAs) observed COMP depletion by siRNA or hypoxia increases NOX2 and superoxide and depletes mitochondrial SOD2. ET1 also increases superoxide in a manner that potentially impairs mitochondrial heme biosynthesis.
View Article and Find Full Text PDFIntroduction Innovating strategies have become a compulsion in all fields associated with improved outcomes. Similarly, an innovation was introduced in the curriculum design and content to be tested for the Anatomy and Physiology course at the College of Science and Health Professions (COSHP), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), in the spring semester of 2020. Before the COVID-19 pandemic, until the spring semester of 2019, two examinations were conducted as continuous assessments (Midterm I and II), followed by a comprehensive Final examination.
View Article and Find Full Text PDFThe roles of ACE-independent ANG II production via chymase and therapeutic potential of epoxyeicosatrienoic acids (EETs) in fructose-induced metabolic syndrome (MetS) in the adolescent population remain elusive. Thus we tested the hypothesis that a high-fructose diet (HFD) in young rats elicits chymase-dependent increases in ANG II production and oxidative stress, responses that are reversible by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-) urea (TPPU), an inhibitor of soluble epoxide hydrolase (sEH) that metabolizes EETs. Three groups of weanling rats (21-day-old) were fed a normal diet, 60% HFD, and HFD with TPPU, respectively, for 30 days.
View Article and Find Full Text PDFEpoxyeicosatrienoic acids (EETs) are synthesized from arachidonic acid by CYP/epoxygenase and metabolized by soluble epoxide hydrolase (sEH). Roles of EETs in hypoxia-induced pulmonary hypertension (HPH) remain elusive. The present study aimed to investigate the underlying mechanisms, by which EETs potentiate HPH.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2019
Changes in reactive oxygen species and extracellular matrix seem to participate in pulmonary hypertension development. Because we recently reported evidence for chronic hypoxia decreasing expression of cartilage oligomeric matrix protein (COMP) and evidence for this controlling loss of pulmonary arterial smooth muscle bone morphogenetic protein receptor-2 (BMPR2) and contractile phenotype proteins, we examined if changes in superoxide metabolism could be an important factor in a bovine pulmonary artery (BPA), organoid cultured under hypoxia for 48 h model. Hypoxia (3% O) caused a depletion of COMP in BPA, but not in bovine coronary arteries.
View Article and Find Full Text PDFAntioxid Redox Signal
October 2019
This review considers how some systems controlling pulmonary vascular function are potentially regulated by redox processes to examine how and why conditions such as prolonged hypoxia, pathological mediators, and other factors promoting vascular remodeling contribute to the development of pulmonary hypertension (PH). Aspects of vascular remodeling induction mechanisms described are associated with shifts in glucose metabolism through the pentose phosphate pathway and increased cytosolic NADPH generation by glucose-6-phosphate dehydrogenase, increased glycolysis generation of cytosolic NADH and lactate, mitochondrial dysfunction associated with superoxide dismutase-2 depletion, changes in reactive oxygen species and iron metabolism, and redox signaling. The regulation and impact of hypoxia-inducible factor and the function of cGMP-dependent and redox regulation of protein kinase G are considered for their potential roles as key sensors and coordinators of redox and metabolic processes controlling the progression of vascular pathophysiology in PH, and how modulating aspects of metabolic and redox regulatory systems potentially function in beneficial therapeutic approaches.
View Article and Find Full Text PDFFerrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guanylyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10(-5)-10(-7)M; a selective FECH antagonist) for 24 and 72 hours respectively.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2017
To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor (-TUCB; 1 mg·kg·day) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups.
View Article and Find Full Text PDF