Publications by authors named "Nora Schulz"

Energetic resources fuel immune responses and parasite growth within organisms, but it is unclear whether energy allocation is sufficient to explain changes in infection outcomes under the threat of multiple parasites. We manipulated diet in flour beetles () infected with two natural parasites to investigate the role of resources in shifting metabolic and immune responses after single and co-infection. Our results suggest that gregarine parasites alter the within-host energetic environment, and by extension juvenile development time, in a diet-dependent manner.

View Article and Find Full Text PDF

Circadian clocks are inherent to most organisms, including cryptozoic animals that seldom encounter direct light, and regulate their daily activity cycles. A conserved suite of clock genes underpins these rhythms. In this study, we explore the circadian behaviors of the red flour beetle , a significant pest impacting stored grain globally.

View Article and Find Full Text PDF

Intergenerational effects from fathers to offspring are increasingly reported from diverse organisms, but the underlying mechanisms remain speculative. Paternal trans-generational immune priming (TGIP) was demonstrated in the red flour beetle Tribolium castaneum: non-infectious bacterial exposure of fathers protects their offspring against an infectious challenge for at least two generations. Epigenetic processes, such as cytosine methylation of nucleic acids, have been proposed to enable transfer of information from fathers to offspring.

View Article and Find Full Text PDF

The within-host ecology of hosts and their microbes involves complex feedbacks between the host immune system, energetic resources, and microbial growth and virulence, which in turn affect the probability of transmission to new hosts. This complexity can be challenging to address with experiments alone, and mathematical models have traditionally played an essential role in disentangling these processes, making new predictions, and bridging gaps across biological scales. Insect hosts serve as uniquely powerful systems for the integration of experiments and theory in disease biology.

View Article and Find Full Text PDF

Immune priming, the increased chance to survive a secondary encounter with a pathogen, has been described for many invertebrate species, which lack the classical adaptive immune system of vertebrates. Priming can be specific even for closely related bacterial strains, last up to the entire lifespan of an individual, and in some species, it can also be transferred to the offspring and is then called transgenerational immune priming (TGIP). In the red flour beetle , a pest of stored grains, TGIP has even been shown to be transferred paternally after injection of adult beetles with heat-killed .

View Article and Find Full Text PDF

Epigenetic mechanisms, such as CpG DNA methylation enable phenotypic plasticity and rapid adaptation to changing environments. CpG DNA methylation is established by DNA methyltransferases (DNMTs), which are well conserved across vertebrates and invertebrates. There are insects with functional DNA methylation despite lacking a complete set of Dnmts.

View Article and Find Full Text PDF

A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted.

View Article and Find Full Text PDF