Publications by authors named "Nora Plesofsky"

A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses.

View Article and Find Full Text PDF

The combined stresses of moderate heat shock (45 degrees C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa. We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells are particularly sensitive to exogenous ceramide, which is lethal at low concentrations.

View Article and Find Full Text PDF

We analyzed expression elements of three disparate groups of mitochondrial genes in Neurospora crassa, apocytochrome b (COB), cytochrome c oxidase 1 (COX1), and the clustered ATP8-ATP6-mtATP9-COX2. To identify promoter sequences we employed the published N. crassa consensus sequence for COB and rRNA genes, and we found closely related sequences within the 5'-regions of both COX1 and the ATP8-COX2 transcriptional units.

View Article and Find Full Text PDF

We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized.

View Article and Find Full Text PDF

The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30.

View Article and Find Full Text PDF