Publications by authors named "Nora P Goette"

Article Synopsis
  • * Two specific DAMPs, HMGB1 and S100A8/A9, were found to be elevated in MF patients and linked to higher systemic inflammation and adverse clinical outcomes, such as anemia and lower survival rates.
  • * Monocytes in MF patients are hyperactivated and contribute to increased levels of S100A8/A9, while also showing a strong inflammatory response through Toll-like receptors TLR4 and TLR2, suggesting that DAMPs
View Article and Find Full Text PDF

We used an animal model of salt-sensitive hypertension (SSH) in which ovariectomized (oVx) rats developed hypertension with high salt (HS) intake. Hypertension is accompanied by changes in the percentage of CD4 T lymphocytes, immune CD45 cell infiltration into renal tissue, and changes in Na, K- ATPase (NKA) expression in both renal tissue and peripheral blood mononuclear cells (PBMCs). To determine whether the observed changes resulted from HS intake, high blood pressure, or both, hydralazine (HDZ) was used to lower blood pressure.

View Article and Find Full Text PDF

Background: Multiple blood cell abnormalities participate in the development of inflammation in systemic lupus erythematosus (SLE). Although platelets have been suggested as one of these contributors through the release of their content during activation, there are limited specific data about their role as immune players in SLE.

Materials And Methods: Thirteen SLE patients were included.

View Article and Find Full Text PDF

Myelofibrosis (MF) is a clonal hematopoietic stem cell disorder classified among chronic myeloproliferative neoplasms, characterized by exacerbated myeloid and megakaryocytic proliferation and bone marrow fibrosis. It is induced by driver (//) and high molecular risk mutations coupled to a sustained inflammatory state that contributes to disease pathogenesis. Patient outcome is determined by stratification into risk groups and refinement of current prognostic systems may help individualize treatment decisions.

View Article and Find Full Text PDF

ADPKD is the most common genetic renal disease, characterized by the presence of multiple cysts which, through slow and gradual growth, lead to glomerular filtration rate (GFR) decline and end-stage renal disease. Cystic growth is associated with increased intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP). Extracellular vesicles (EVs) are proposed to participate in "remote sensing" by transporting different cargoes, but their relevance to ADPKD progression is poorly understood.

View Article and Find Full Text PDF

Bone marrow stromal cells provide a proper environment for the development of hematologic lineages. The incorporation of different stromal cells into in vitro culture systems would be an attractive model to study megakaryopoiesis and thrombopoiesis. Our objective was to evaluate the participation of different types of stromal cells in in vitro megakaryopoiesis, thrombopoiesis, and megakaryocyte (MK) survival.

View Article and Find Full Text PDF

SummarySystemic lupus erythematosus (SLE) is an autoimmune condition developing thrombocytopenia in about 10-15% of cases, however, mechanisms leading to low platelet count were not deeply investigated in this illness. Here we studied possible causes of thrombocytopenia, including different mechanisms of platelet clearance and impairment in platelet production. Twenty-five SLE patients with and without thrombocytopenia were included.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? In a model of salt-sensitive hypertension in ovariectomized (oVx) adult Wistar rats, what is the expression of proteins related to sodium transport in peripheral blood mononuclear cells (PBMCs), and how does the response of proteins to high sodium intake compare with changes in blood pressure in intact female rats? What is the main finding and its importance? Sodium transport proteins in PBMCs react to high sodium and blood pressure markedly differently in oVx versus intact female rats. Protein expression shows sodium and pressure sensitivity. Renal immune cells increase in oVx under high salt.

View Article and Find Full Text PDF

Essential thrombocythemia (ET) is comprised among chronic myeloproliferative neoplasms (MPN) and is caused by driver mutations in 2, , and , which lead to megakaryocyte proliferation and prominent thrombocytosis. Thrombosis remains the main cause of morbidity in ET and is driven by the interplay between blood cells, the endothelium, the clotting cascade, and host-derived inflammatory mediators. Platelet activation plays a key role in the thrombotic predisposition, although the underlying mechanisms remain poorly defined.

View Article and Find Full Text PDF

Mechanisms leading to low platelet count in immune thrombocytopenia (ITP) involves both decreased production and increased destruction of platelet. However, the contribution of these pathologic mechanisms to clinical outcome of individual patients is uncertain. Here we evaluated different pathogenic mechanisms including in vitro megakaryopoiesis, platelet/megakaryocyte (MK) desialylation and MK apoptosis, and compared these effects with thrombopoyesis and platelet apoptosis in the same cohort of ITP patients.

View Article and Find Full Text PDF

Germline mutations lead to thrombocytopenia and platelet dysfunction in familial platelet disorder with predisposition to acute myelogenous leukemia (AML). Multiple aspects of platelet function are impaired in these patients, associated with altered expression of genes regulated by We aimed to identify -targets involved in platelet function by combining transcriptome analysis of patient and sh-transduced megakaryocytes (MK). Down-regulated genes included TREM-like transcript (TLT)-1 (TREML1) and the integrin subunit alpha (α)-2 (ITGA2) of collagen receptor α2-beta (β)-1, which are involved in platelet aggregation and adhesion, respectively.

View Article and Find Full Text PDF

The SDF-1-CXCR4 axis plays an essential role in the regulation of platelet production, by directing megakaryocyte (MK) migration toward the vascular niche, thus allowing terminal maturation and proplatelet formation, and also regulates platelet function in an autocrine manner. Inherited thrombocytopenias (IT) comprise a spectrum of diverse clinical conditions caused by mutations in genes involved in platelet production and function. We assessed CXCR4 expression and SDF-1 levels in a panel of well-characterized forms of IT.

View Article and Find Full Text PDF

Mechanisms leading to decreased platelet count in immune thrombocytopenia (ITP) are heterogeneous. This study describes increased platelet apoptosis involving loss of mitochondrial membrane potential (ΔΨm), caspase 3 activation (aCasp3) and phosphatidylserine (PS) externalization in a cohort of adult ITP patients. Apoptosis was not related to platelet activation, as PAC-1 binding, P-selectin exposure and GPIb-IX internalization were not increased.

View Article and Find Full Text PDF

Background: Anagrelide represents a treatment option for essential thrombocythemia, although its place in therapy remains controversial.

Aim: To assess the impact of mutational status in response rates and development of adverse events during long-term use of anagrelide.

Methods: We retrospectively evaluated 67 patients with essential thrombocythemia treated with anagrelide during 68 (4-176) months.

View Article and Find Full Text PDF

The pathophysiological mechanisms contributing to the decreased platelet count in immune thrombocytopenia (ITP) are not entirely understood. Here, we investigated the key step of proplatelet formation (PPF) by studying the effect of ITP plasma in thrombopoiesis. Normal cord blood-derived mature megakaryocytes were cultured in the presence of recalcified plasma from ITP patients, and PPF was evaluated by microscopic analysis.

View Article and Find Full Text PDF

Objective: In a previous study, we found increased plasma soluble receptor for interleukin-6 (sIL-6R) levels in patients with essential thrombocythemia (ET) that could promote megakaryopoiesis through IL-6 binding and further interaction with the signal transducer gp130. Here we have searched for the cell source of sIL-6R within mononuclear cells in these patients and the underlying abnormalities involved in its overproduction.

Materials And Methods: Thirty patients with the diagnosis of ET were studied.

View Article and Find Full Text PDF

This study investigated the involvement of chemokines including stromal derived factor 1 (SDF-1), interleukin 8 (IL-8), growth-related oncogene alpha (GRO-alpha) and their receptors, CXCR4, CXCR2 and CXCR1 in essential thrombocythemia (ET), a chronic myeloproliferative disease characterized by megakaryocytic hyperplasia and high platelet count. Fifty-three ET patients were studied. Plasma levels of SDF-1, IL-8 and GRO-alpha, evaluated by enzyme-linked immunosorbent assay, and flow cytometric analysis of CXCR1 and CXCR2 on the platelet membrane, were found to be normal in ET patients.

View Article and Find Full Text PDF

Megakaryopoiesis and platelet production are driven by transcription factors and cytokines present in bone marrow environment. Essential thrombocythemia (ET) is a chronic myeloproliferative disorder characterized by high platelet count and megakaryocytic hyperplasia. In the present work we evaluated plasmatic levels of cytokines involved in megakaryocytic development in a group of patients with ET that were not on treatment, as well as thrombopoietin (TPO) levels before and during anagrelide treatment.

View Article and Find Full Text PDF

Objective: JAK2V617F mutation rate in granulocytes from essential thrombocythemia (ET) patients ranges from 12% to 57%. Our aim was to evaluate the frequency of this mutation in the megakaryocyte/platelet lineage, and to analyze its clinical associations in ET. In addition, we determined whether this mutation leads to constitutive phosphorylation of STAT5 in platelets.

View Article and Find Full Text PDF

Interleukin 6 is a multifunctional cytokine that exerts its biological activity through binding to an 80 Kd specific receptor (IL-6Ralpha) and a 130 Kd signal-transducing unit (gp130). A 55 Kd soluble IL-6R (IL-6sR) has also been described which, after binding to IL-6 is also able to activate gp130. The presence of IL-6Ralpha was described in some megakaryoblastic cell lines but is still controversial in normal megakaryocytes.

View Article and Find Full Text PDF