Background & Aims: The diagnosis of primary liver cancers (PLCs) can be challenging, especially on biopsies and for combined hepatocellular-cholangiocarcinoma (cHCC-CCA). We automatically classified PLCs on routine-stained biopsies using a weakly supervised learning method.
Method: We selected 166 PLC biopsies divided into training, internal and external validation sets: 90, 29 and 47 samples, respectively.
IEEE Trans Med Imaging
March 2019
This paper introduces a robust 2-D cardiac motion estimation method. The problem is formulated as an energy minimization with an optical flow-based data fidelity term and two regularization terms imposing spatial smoothness and the sparsity of the motion field in an appropriate cardiac motion dictionary. Robustness to outliers, such as imaging artefacts and anatomical motion boundaries, is introduced using robust weighting functions for the data fidelity term as well as for the spatial and sparse regularizations.
View Article and Find Full Text PDFThis paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step.
View Article and Find Full Text PDF