Microplastic particles (MP), arising from the gradual decomposition of plastics in the environment, have been identified as a global problem. Most investigations of MP cytotoxicity use pristine spherical particles available from commercial sources when evaluating their impact on mammalian cells, while only limited data is available for the more relevant "weathered microplastic". In this study, we exposed murine macrophages to polystyrene MP either after up to 130 days of accelerated ageing or in pristine condition.
View Article and Find Full Text PDFWeathering of microplastics made of commodity plastics like polystyrene, polypropylene and polyethylene introduces polar polymer defects as a result of photooxidation and mechanical stress. Thus, hydrophobic microplastic particles gradually become hydrophilic, consisting of polar oligomers with a significant amount of oxygen-bearing functional groups. This turnover continuously changes interactions between microplastics and natural colloidal matter.
View Article and Find Full Text PDFWhen plastics enter the environment, they are exposed to abiotic and biotic impacts, resulting in degradation and the formation of micro- and nanoplastic. Microplastic is ubiquitous in every environmental compartment. Nevertheless, the underlying degradation processes are not yet fully understood.
View Article and Find Full Text PDFThe fragmentation of macro- into microplastics (MP) is the main source of MP in the environment. Nevertheless, knowledge about degradation mechanisms, changes in chemical composition, morphology, and residence times is still limited. Here, we present a long-term accelerated weathering study on polystyrene (PS) tensile bars and MP particles using simulated solar radiation and mechanical stress.
View Article and Find Full Text PDF