The thalamus plays an important role in sensory and motor information processing by mediating communication between the periphery and the cerebral cortex. Alterations in thalamic development have profound consequences on sensory and motor function. In this study, we investigated a mouse model in which thalamic nuclei formation is disrupted because of the absence of Sonic hedgehog ( Shh ) expression from 2 key signaling centers that are required for embryonic forebrain development.
View Article and Find Full Text PDFThe anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive.
View Article and Find Full Text PDFThe basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of ceptive BLA projection neurons (BLA ensemble). However, the role of the BLA ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood.
View Article and Find Full Text PDFWith concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells.
View Article and Find Full Text PDFFear is an adaptive state that drives defensive behavioral responses to specific and imminent threats. The central nucleus of the amygdala (CeA) is a critical site of adaptations that are required for the acquisition and expression of fear, in part due to alterations in the activity of inputs to the CeA. Here, we characterize a novel GABAergic input to the CeA from the ventral periaqueductal gray (vPAG) using fiber photometry and ex vivo whole-cell slice electrophysiology combined with optogenetics and pharmacology.
View Article and Find Full Text PDFDrugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABA receptors (GABARs) and D DA receptors (DRs).
View Article and Find Full Text PDFThe pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful.
View Article and Find Full Text PDFGeneral anesthetics during surgery are presumed to block pain by dampening brain activity and promoting loss-of-consciousness. A new study shows that anesthetics activate an endogenous analgesia neural ensemble in the central nucleus of the amygdala.
View Article and Find Full Text PDFDopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABA receptors (GABARs) and D DA receptors (DRs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABAR and DR activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K (GIRK) channels.
View Article and Find Full Text PDFThe increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K (GIRK/Kir3) channels mediate the direct inhibitory effect of GABA receptor (GABAR) and D DA receptor (DR) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on DR-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors.
View Article and Find Full Text PDFKappa opioid receptors (KORs) are involved in a variety of aversive behavioral states, including anxiety. To date, a circuit-based mechanism for KOR-driven anxiety has not been described. Here, we show that activation of KORs inhibits glutamate release from basolateral amygdala (BLA) inputs to the bed nucleus of the stria terminalis (BNST) and occludes the anxiolytic phenotype seen with optogenetic activation of BLA-BNST projections.
View Article and Find Full Text PDFThe periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation.
View Article and Find Full Text PDFDrugs of abuse can "hijack" synaptic plasticity, a physiological basis of learning and memory, establishing maladaptations that can promote drug addiction. A wealth of data supports the existence and importance of neuroadaptations in excitatory neurotransmission upon drug exposure. Recent discoveries, however, have shown that inhibitory neurotransmission mediated by G protein-gated inwardly rectifying potassium (K(+)) (GIRK/Kir3) channels is also subject to adaptation triggered by exposure to drugs of abuse.
View Article and Find Full Text PDFChronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions.
View Article and Find Full Text PDFG-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation.
View Article and Find Full Text PDFThe present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow).
View Article and Find Full Text PDFBinge alcohol drinking is a tremendous public health problem because it leads to the development of numerous pathologies, including alcohol abuse and anxiety. It is thought to do so by hijacking brain systems that regulate stress and reward, including neuropeptide Y (NPY) and corticotropin-releasing factor (CRF). The central actions of NPY and CRF have opposing functions in the regulation of emotional and reward-seeking behaviors; thus, dysfunctional interactions between these peptidergic systems could be involved in the development of these pathologies.
View Article and Find Full Text PDFA large literature has demonstrated that neuropeptide Y (NPY) regulates many emotional and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However, emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain region and neurotransmitter system-dependent fashion.
View Article and Find Full Text PDFThe role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse.
View Article and Find Full Text PDFNumerous rodent and human studies have demonstrated that neuropeptide Y (NPY) is involved in the regulation of anxiety-related behaviors. In this study, we examined whether there were differences in NPY signaling between two inbred mouse strains (C57BL/6J and DBA/2J) that exhibit divergent basal and stress-induced anxiety phenotypes. We focused on the bed nucleus of the stria terminals (BNST), a structure in the extended amygdala that is important for the regulation of anxiety-like behavior and contains NPY receptors.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
March 2012
Amines are one class of signaling molecules used by nervous systems. In crustaceans, four amines are recognized: dopamine, histamine, octopamine, and serotonin. While much is known about the physiological actions of amines in crustaceans, little is known about them at the molecular level.
View Article and Find Full Text PDF