Publications by authors named "Nora Ludwig"

Bacterial colonization of open wounds is common, and patients with infected wounds often report significantly elevated pain sensitivity at the wound site. Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels are known to play an important role in pain signaling and may be sensitized under pro-inflammatory conditions. Bacterial membrane components, such as phosphoethanolamine dihydroceramide (PEDHC), phosphoglycerol dihydroceramide (PGDHC), and lipopolysaccharide (LPS), are released in the environment from the Gram-negative bacteria of the Bacteroidetes species colonizing the infected wounds.

View Article and Find Full Text PDF

Arabidopsis plants in their natural environment are susceptible to infection by oomycete pathogens, in particular to downy mildew and white rust diseases. These naturally occurring infectious agents have imposed evolutionary pressures on Arabidopsis populations and are therefore highly relevant for the study of host-pathogen co-evolution. In addition, the study of oomycete diseases, including infections caused by several Phytophthora species, has led to many scientific discoveries on Arabidopsis immunity and disease.

View Article and Find Full Text PDF

The phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown.

View Article and Find Full Text PDF

Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels.

View Article and Find Full Text PDF

The potato (Solanum tuberosum) nucleotide binding-leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression of Rx and cytoplasmically localized RanGAP2 sequesters Rx in the cytoplasm.

View Article and Find Full Text PDF