Glioblastoma is one of the most frequent primary brain tumors with a poor prognosis. Nevertheless, some patients show a prolonged survival. The aim of the present study was to compare the expression profiles of tumor derived microRNA (miR) of long‑term survivors with those of short‑term survivors in order to identify differentially expressed miRs as well as their target genes, which may elucidate mechanisms that play a role in varying tumor progression and, therefore, may influence survival.
View Article and Find Full Text PDFGlioblastoma (GBM) is one of the most frequent primary brain tumors. Limited therapeutic options and high recurrency rates lead to a dismal prognosis. One frequent, putative driver mutation is the genomic amplification of the oncogenic receptor tyrosine kinase EGFR.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults. It is known that amplification of the epidermal growth factor receptor gene (EGFR) occurs in approximately 40% of GBM, leading to enhanced activation of the EGFR signaling pathway and promoting tumor growth. Although GBM mutations are stably maintained in GBM in vitro models, rapid loss of EGFR gene amplification is a common observation during cell culture.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults, highlighting the need for novel treatment strategies. Patient derived xenografts (PDX) represent a valuable tool to accomplish this task.
Methods: PDX were established by implanting GBM tissue subcutaneously.
Purpose: To prospectively evaluate the feasibility of 3-D radioguided occult lesion localization (iROLL) and to compare iROLL with wire-guided localization (WGL) in patients with early-stage breast cancer undergoing breast-conserving surgery and sentinel lymph node biopsy (SLNB).
Methods: WGL (standard procedure) and iROLL in combination with SLNB were performed in 31 women (mean age 65.1 ± 11.