Publications by authors named "Nora Khaldi"

Background: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models.

Objectives: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization.

View Article and Find Full Text PDF

Delayed onset muscle soreness (DOMS) due to intense physical exertion can negatively impact contractility and performance. Previously, NPN_1 (PeptiStrong™), a hydrolysate derived from a protein concentrate discovered through artificial intelligence (AI), was preclinically shown to help maintain muscle health, indicating the potential to mediate the effect of DOMS and alter molecular markers of muscle damage to improve recovery and performance. A randomised double-blind placebo-controlled trial was conducted on 30 healthy male (30-45 years old) volunteers (NCT05159375).

View Article and Find Full Text PDF

Scientific research consistently demonstrates that diseases may be delayed, treated, or even prevented and, thereby, health may be maintained with health-promoting functional food ingredients (FFIs). Consumers are increasingly demanding sound information about food, nutrition, nutrients, and their associated health benefits. Consequently, a nutrition industry is being formed around natural foods and FFIs, the economic growth of which is increasingly driven by consumer decisions.

View Article and Find Full Text PDF

Fresh-cut fruits and vegetables are becoming particularly popular as healthy fast-food options; however, they present challenges such as accelerated rates of decay and increased risk for contamination when compared to whole produce. Given that food safety must remain paramount for producers and manufacturers, research into novel, natural food preservation solutions which can help to ensure food safety and protect against spoilage is on the rise. In this work, we investigated the potential of using a novel protein hydrolysate, produced by the enzymatic hydrolysis of (PSH), as a novel bio-preservative and its abilities to reduce populations of O157:H7 after inoculation on a lettuce leaf.

View Article and Find Full Text PDF

The prevalence of prediabetes is rapidly increasing, and this can lead to an increased risk for individuals to develop type 2 diabetes and associated diseases. Therefore, it is necessary to develop nutritional strategies to maintain healthy glucose levels and prevent glucose metabolism dysregulation in the general population. Functional ingredients offer great potential for the prevention of various health conditions, including blood glucose regulation, in a cost-effective manner.

View Article and Find Full Text PDF

Characterising key components within functional ingredients as well as assessing efficacy and bioavailability is an important step in validating nutritional interventions. Machine learning can assess large and complex data sets, such as proteomic data from plants sources, and so offers a prime opportunity to predict key bioactive components within a larger matrix. Using machine learning, we identified two potentially bioactive peptides within a derived hydrolysate, NPN_1, an ingredient which was previously identified for preventing muscle loss in a murine disuse model We investigated the predicted efficacy of these peptides and observed that HLPSYSPSPQ and TIKIPAGT were capable of increasing protein synthesis and reducing TNF-α secretion, respectively.

View Article and Find Full Text PDF

While there have been significant advances in drug discovery for diabetes mellitus over the past couple of decades, there is an opportunity and need for improved therapies. While type 2 diabetic patients better manage their illness, many of the therapeutics in this area are peptide hormones with lengthy sequences and a molecular structure that makes them challenging and expensive to produce. Using machine learning, we present novel anti-diabetic peptides which are less than 16 amino acids in length, distinct from human signalling peptides.

View Article and Find Full Text PDF

Bovine-derived formula milk (FM) is a common substitute to human milk (HM), but lacks key functional benefits associated with HM. Accordingly, there have been significant efforts to humanise FM. Recent research has demonstrated that HM-derived peptides convey an array of beneficial bioactivities.

View Article and Find Full Text PDF

Food-derived bioactive peptides offer great potential for the treatment and maintenance of various health conditions, including chronic inflammation. Using in vitro testing in human macrophages, a rice derived functional ingredient natural peptide network (NPN) significantly reduced Tumour Necrosis Factor (TNF)-α secretion in response to lipopolysaccharides (LPS). Using artificial intelligence (AI) to characterize rice NPNs lead to the identification of seven potentially active peptides, the presence of which was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively.

View Article and Find Full Text PDF

While the antibiotic era has come and gone, antimicrobial peptides (AMPs) hold promise as novel therapies to treat multidrug resistant (MDR) pathogens in an age where the threat of multidrug resistance escalates worldwide. Here, we report the bactericidal properties of NuriPep 1653, a novel 22 mer and non-modified peptide. NuriPep 1653 was identified within the sequence of the non-antimicrobial P54 protein, which is involved in nutrient reservoir activity in .

View Article and Find Full Text PDF

Little is known about the digestive process in infants. In particular, the chronological activity of enzymes across the course of digestion in the infant remains largely unknown. To create a temporal picture of how milk proteins are digested, enzyme activity was compared between intact human milk samples from three mothers and the gastric samples from each of their 4-12 day postpartum infants, 2 h after breast milk ingestion.

View Article and Find Full Text PDF

In vitro digestion of isolated milk proteins results in milk peptides with a variety of actions. However, it remains unclear to what degree protein degradation occurs in vivo in the infant stomach and whether peptides previously annotated for bioactivity are released. This study combined nanospray LC separation with time-of-flight mass spectrometry, comprehensive structural libraries, and informatics to analyze milk from 3 human mothers and the gastric aspirates from their 4- to 12-d-old postpartum infants.

View Article and Find Full Text PDF

Human milk is known to contain several proteases, but little is known about whether these enzymes are active, which proteins they cleave, and their relative contribution to milk protein digestion in vivo. This study analyzed the mass spectrometry-identified protein fragments found in pooled human milk by comparing their cleavage sites with the enzyme specificity patterns of an array of enzymes. The results indicate that several enzymes are actively taking part in the digestion of human milk proteins within the mammary gland, including plasmin and/or trypsin, elastase, cathepsin D, pepsin, chymotrypsin, a glutamyl endopeptidase-like enzyme, and proline endopeptidase.

View Article and Find Full Text PDF

Milk is a hallmark of mammalian evolution: a unique food that has evolved with mammals. Despite the importance of this food, it is not known if variation in AA composition between different species is important to milk proteins or how it might affect the nutritional value of milk. As milk is the only food source for newborn mammals, it has long been speculated that milk proteins should be enriched in essential AA.

View Article and Find Full Text PDF

Milk is traditionally considered an ideal source of the basic elemental nutrients required by infants. More detailed examination is revealing that milk represents a more functional ensemble of components with benefits to both infants and mothers. A comprehensive peptidomics method was developed and used to analyze human milk yielding an extensive array of protein products present in the fluid.

View Article and Find Full Text PDF

Mass spectrometric analysis of peptides contained in enzymatically digested hydrolysates of proteins is increasingly being used to characterize potentially bioactive or otherwise interesting hydrolysates. However, when preparations containing mixtures of enzymes are used, from either biological or experimental sources, it is unclear which of these enzymes have been most important in hydrolyzing the sample. We have developed a tool to rapidly evaluate the evidence for which enzymes are most likely to have cleaved the sample.

View Article and Find Full Text PDF

Intracellular juxtamembrane regions of transmembrane proteins play pivotal roles in cell signalling, mediated by protein-protein interactions. Disordered protein regions, and short conserved motifs within them, are emerging as key determinants of many such interactions. Here, we investigated whether disorder and conserved motifs are enriched in the juxtamembrane area of human single-pass transmembrane proteins.

View Article and Find Full Text PDF

Protein disorder has been frequently associated with protein-protein interaction. However, our knowledge of how protein disorder evolves within a network is limited. It is expected that physically interacting proteins evolve in a coordinated manner.

View Article and Find Full Text PDF

Background: Intrinsically disordered regions are enriched in short interaction motifs that play a critical role in many protein-protein interactions. Since new short interaction motifs may easily evolve, they have the potential to rapidly change protein interactions and cellular signaling. In this work we examined the dynamics of gain and loss of intrinsically disordered regions in duplicated proteins to inspect if changes after genome duplication can create functional divergence.

View Article and Find Full Text PDF

Background: Milk proteins are required to proceed through a variety of conditions of radically varying pH, which are not identical across mammalian digestive systems. We wished to investigate if the shifts in these requirements have resulted in marked changes in the isoelectric point and charge of milk proteins during evolution.

Results: We investigated nine major milk proteins in 13 mammals.

View Article and Find Full Text PDF

The secondary metabolite gene clusters of euascomycete fungi are among the largest known clusters of functionally related genes in eukaryotes. Most of these clusters are species specific or genus specific, and little is known about how they are formed during evolution. We used a comparative genomics approach to study the evolutionary origins of a secondary metabolite cluster that synthesizes a polyketide derivative, namely, the fumonisin (FUM) cluster of Fusarium verticillioides, and that of Aspergillus niger another fumonisin (fumonisin B) producing species.

View Article and Find Full Text PDF

Although important shifts in the isoelectric point of prokaryotic proteins, mainly due to adaptation to environmental pH, have been widely reported, such studies have not covered mammalian proteins, where pH changes may relate to changes in subcellular or tissue compartmentalization. We explored the isoelectric point of the proteome of 13 mammalian species. We detected proteins that have shifted their pI the most among 13 mammalian species, and investigated if these differences reflect adaptations of the orthologous proteins to different conditions.

View Article and Find Full Text PDF

Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal genomes, we developed the web-based software SMURF (www.

View Article and Find Full Text PDF

The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus.

View Article and Find Full Text PDF