Publications by authors named "Nora Gigli Bisceglia"

Leaf senescence plays a critical role in a plant's overall reproductive success due to its involvement in nutrient remobilization and allocation. However, our current understanding of the molecular mechanisms controlling leaf senescence remains limited. In this study, we show that the receptor-like kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) functions as a negative regulator of leaf senescence.

View Article and Find Full Text PDF

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress.

View Article and Find Full Text PDF

Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions.

View Article and Find Full Text PDF

Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome.

View Article and Find Full Text PDF

Owing to its detrimental effect on plant growth, salinity is an increasing worldwide problem for agriculture. To understand the molecular mechanisms activated in response to salt in Arabidopsis thaliana, we investigated the Catharanthus roseus receptor-like kinase 1-like family, which contains sensors that were previously shown to be involved in sensing the structural integrity of the cell walls. We found that herk1 the1-4 double mutants, lacking the function of HERKULES1 (HERK1) and combined with a gain-of-function allele of THESEUS1 (THE1), strongly respond to salt application, resulting in an intense activation of stress responses, similarly to plants lacking FERONIA (FER) function.

View Article and Find Full Text PDF

Plant cells can be distinguished from animal cells by their cell walls and high-turgor pressure. Although changes in turgor and the stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism.

View Article and Find Full Text PDF

Plants react to a myriad of biotic and abiotic environmental signals through specific cellular mechanisms required for survival under stress. Although pathogen perception has been widely studied and characterized, salt stress perception and signaling remain largely elusive. Recent observations, obtained in the model plant Arabidopsis thaliana, show that perception of specific features of pathogens also allows plants to mount salt stress resilience pathways, highlighting the possibility that salt sensing and pathogen perception mechanisms partially overlap.

View Article and Find Full Text PDF

Recognition at the plasma membrane of danger signals (elicitors) belonging to the classes of the microbe/pathogen- and damage-associated molecular patterns is a key event in pathogen sensing by plants and is associated with a rapid activation of immune responses. Different cellular compartments, including plasma membrane, chloroplasts, nuclei and mitochondria, are involved in the immune cellular program. However, how pathogen sensing is transmitted throughout the cell remains largely to be uncovered.

View Article and Find Full Text PDF

The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements.

View Article and Find Full Text PDF

Following publication of the original article [1], the author reported that the two curves in the sub-diagram WSR4 in Fig. 2a should be the other way round.

View Article and Find Full Text PDF

Background: Plant cell walls participate in all plant-environment interactions. Maintaining cell wall integrity (CWI) during these interactions is essential. This realization led to increased interest in CWI and resulted in knowledge regarding early perception and signalling mechanisms active during CWI maintenance.

View Article and Find Full Text PDF

During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how this coordination is achieved. Here, we investigated coordination in seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and cell shape in root tips.

View Article and Find Full Text PDF

Cell walls surround all plant cells, and their composition and structure are modified in a tightly controlled, adaptive manner to meet sometimes opposing functional requirements during growth and development. The plant cell wall integrity (CWI) maintenance mechanism controls these functional modifications, as well as responses to cell wall damage (CWD). We investigated how the CWI system mediates responses to CWD in CWD induced by cell wall-degrading enzymes or an inhibitor of cellulose biosynthesis elicited similar, turgor-sensitive stress responses.

View Article and Find Full Text PDF

During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes.

View Article and Find Full Text PDF

The Arabidopsis NPK1-related Protein kinases ANP1, ANP2 and ANP3 belong to the MAP kinase kinase kinase (MAPKKK) superfamily and were previously described to be crucial for cytokinesis, elicitor-induced immunity and development. Here we investigate the basis of their role in development by using conditional β-estradiol-inducible triple mutants to overcome lethality. In seedlings, lack of ANPs causes root cell bulging, with the transition zone being the most sensitive region.

View Article and Find Full Text PDF

Dirigent (DIR) proteins were found to mediate regio- and stereoselectivity of bimolecular phenoxy radical coupling during lignan biosynthesis. Here we summarize the current knowledge of the importance of DIR proteins in lignan and lignin biosynthesis and highlight their possible importance in plant development. We focus on the still rather enigmatic Arabidopsis DIR gene family, discussing the few members with known functional importance.

View Article and Find Full Text PDF

Phytoalexins are heterogeneous low molecular mass secondary metabolites with antimicrobial activity produced at the infection site in response to pathogen invasion and represent an important part of the plant defense repertoire. Camalexin (3-Thiazol-2'-yl-indole) is a known phytoalexin first detected and isolated in , from which it takes its name, infected with (Browne , 1991). Production of camalexin is also induced in leaves by a range of biotrophic and necrotrophic plant pathogens (bacteria, oomycetes, fungi and viruses) (Ahuja , 2012) as well as by abiotic stresses, such as UV and chemicals ( acifluorfen, paraquat, chlorsulfuron and α-amino butyric acid) (Zhao , 1998; Tierens , 2002).

View Article and Find Full Text PDF

Plant immunity is activated through complex and cross-talking transduction pathways that include a mitogen-activated protein kinase phosphorylation cascade. Here, we have investigated the role in immunity of the Arabidopsis (Arabidopsis thaliana) gene subfamily that encodes the mitogen-activated protein triple kinases indicated as ARABIDOPSIS NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-RELATED PROTEIN KINASE1 (ANP1), ANP2, and ANP3. For this study, we used representative danger signals (elicitors) belonging to the classes of the damage- and pathogen-associated molecular patterns, i.

View Article and Find Full Text PDF