Fumonisin B1 is a mycotoxin produced by that modifies the membrane properties from animal cells and inhibits complex sphingolipids synthesis through the inhibition of ceramide synthase. The aim of this work was to determine the effect of Fumonisin B1 on the plant plasma membrane when the mycotoxin was added to germinating maize embryos. Fumonisin B1 addition to the embryos diminished plasma membrane fluidity, increased electrolyte leakage, caused a 7-fold increase of sphinganine and a small decrease in glucosylceramide in the plasma membrane, without affecting phytosphingosine levels or fatty acid composition.
View Article and Find Full Text PDFThe integration of different sources of biological information about what defines a behavioral phenotype is difficult to unify in an entity that reflects the arithmetic sum of its individual parts. In this sense, the challenge of Systems Biology for understanding the "psychiatric phenotype" is to provide an improved vision of the shape of the phenotype as it is visualized by "Gestalt" psychology, whose fundamental axiom is that the observed phenotype (behavior or mental disorder) will be the result of the integrative composition of every part. Therefore, we propose the term "Gestaltomics" as a term from Systems Biology to integrate data coming from different sources of information (such as the genome, transcriptome, proteome, epigenome, metabolome, phenome, and microbiome).
View Article and Find Full Text PDF9-[(3-chloro)phenylamine]-2-[3-(diethylamine)propylamine]thiazolo[5,4-b]quinolone (D3ClP) is a bioisostere of N-(4-(acridin-9-ylamino)-3-methoxyphenyl)methanesulfonamide (m-AMSA) a DNA topoisomerase II inhibitor with proven cytotoxic activity and known to induce DNA damage and apoptotic cell death in K562 cells. However, recent evidence is not consistent with DNA topoisomerase II (DNA TOP2) as the primary target of D3ClP, in contrast to m-AMSA. We provide evidence of histone γH2AX phosphorylation at Ser135 in HeLa cells treated with D3ClP, a marker of DNA double strand repair through Mre11-Rad50-Nbs1 (MRN) pathway.
View Article and Find Full Text PDF