Esterified maltodextrins (EMs) were prepared using enzyme-catalyzed reaction of maltodextrin (DE of 16 and 9) and palmitic acid. The emulsion stabilization mechanism was investigated of a combination of Tween 80 and EM in oil-in-water emulsion to determine interfacial tension, ζ-potential, non-adsorbed Tween 80 in centrifuged-serum of emulsion, and fluoresced microstructure. The interfacial tension and non-adsorbed Tween 80 content of combination of Tween 80 and EM-stabilized oil-in-water emulsions were closed to those of sole Tween 80-stabilized emulsion.
View Article and Find Full Text PDFPartial replacement of animal fats with -3 rich oils is a promising way to improve nutritive value of meat products. In the present work, the effects of porcine fat substitution with soybean oil (SBO) on characteristics of sausages were studied at the oil substitution levels of 25, 35, and 45% by weight of porcine fat. SBO was introduced to the sausages alternatively in native or pre-emulsified forms, the latter with fish protein isolate (FPI) or Na-caseinate (Nc) as emulsifier.
View Article and Find Full Text PDFIsolation of proteins from rice bran was studied, comparing alkaline- and carbohydrase-aided extraction. It was found that protein extractability could be effectively improved using carbohydrases (Viscozyme L and α-amylase), especially when mechanical force was incorporated. Then, rice bran protein hydrolysates (RBPH) were prepared at various degrees of hydrolysis (DH), and employed to stabilize soybean O/W emulsion.
View Article and Find Full Text PDFBackground: Recently, utilization of natural antioxidants in food processing has been of growing interest, owing to the concerns of health hazards of synthetic agents. Protein hydrolysates are a potent candidate for this purpose. In this work, rice bran protein hydrolysates (RBPH) with various degrees of hydrolysis (DH) were prepared, and their antioxidant activities in soybean oil and oil-in-water (O/W) emulsion were examined.
View Article and Find Full Text PDFVarious protein solutions were studied in order to quantify the emulsifying activity of proteins, and to explore oil-water interfacial tension, oil particle size analysis, and oil phase separation behaviors in protein-stabilized oil-in-water (O/W) emulsions. Three proteins, bovine serum albumin (BSA), β-lactoglobulin (β-lg), and β-casein (β-ca), were employed to disperse hexadecane in various pH and ionic strength solutions in a wide range of oil-water ratios. It was confirmed that the volume mean oil droplet diameter, d(43), changed depending on the oil content, the pH, the ionic strength, and the used protein.
View Article and Find Full Text PDFBovine serum albumin (BSA) was employed as a model protein emulsifier to conjugate with aldohexose (D-glucose (Glc) or D-allose (All)) and sugar fatty acid ester (6-O-octanoyl-D-glucose (GlcC8)) through the Maillard reaction. It was found during the reaction that rate of decrease of free amino groups in BSA was almost the same for the BSA-sugar mixtures whereas browning and protein aggregation developed in the following order: Glc < All < GlcC8. It was thought that the rate of degradation of the Amadori compound could have been influenced by the OH-group stereochemistry at the C3 position of aldohexose, while denaturation of BSA by GlcC8 enhanced the browning and protein aggregation.
View Article and Find Full Text PDF