Publications by authors named "Noppadon Nuntawong"

Effective diagnostic tools for screening of latent tuberculosis infection (LTBI) are lacking. We aim to investigate the performance of LTBI diagnostic approaches using label-free surface-enhanced Raman spectroscopy (SERS). We used 1000 plasma samples from Northeast Thailand.

View Article and Find Full Text PDF

Surface enhanced Raman spectroscopy (SERS) has been widely studied and recognized as a powerful label-free technique for trace chemical analysis. However, its drawback in simultaneously identifying several molecular species has greatly limited its real-world applications. In this work, we reported a combination between SERS and independent component analysis (ICA) to detect several trace antibiotics which are commonly used in aquacultures, including malachite green, furazolidone, furaltadone hydrochloride, nitrofurantoin, and nitrofurazone.

View Article and Find Full Text PDF

Background And Aim: Public health and food safety are gaining attention globally. Consumer health can be protected from chemical residues in meat by early detection or screening for antibiotic residues before selling the meat commercially. However, conventional practices are normally applied after slaughtering, which leads to massive business losses.

View Article and Find Full Text PDF

Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations.

View Article and Find Full Text PDF

Various methods for detecting malaria have been developed in recent years, each with its own set of advantages. These methods include microscopic, antigen-based, and molecular-based analysis of blood samples. This study aimed to develop a new, alternative procedure for clinical use by using a large data set of surface-enhanced Raman spectra to distinguish normal and infected red blood cells.

View Article and Find Full Text PDF

Current tools for screening LTBI are limited due to the long turnaround time required, cross-reactivity of tuberculin skin test to BCG vaccine and the high cost of interferon gamma release assay (IGRA) tests. We evaluated Raman spectroscopy (RS) for serum-protein fingerprinting from 26 active TB (ATB) cases, 20 LTBI cases, 34 early clearance (EC; TB-exposed persons with undetected infection) and 38 healthy controls (HC). RS at 532 nm using candidate peaks provided 92.

View Article and Find Full Text PDF

In this data article, we present Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) data obtained using an InVia Reflex confocal Raman microscope (Renishaw; Wotton-under-Edge, UK) and processed using WiRE™ 4.2 software. The data include RS and SERS spectra detected, after removal of albumin, from the serum proteome of tuberculosis (TB) patient categories and controls (active tuberculosis; ATB, latent tuberculosis; LTBI, TB-exposed persons with undetected infection; EC, healthy controls; HC) using 532 nm and 785 nm laser wavelengths for RS and 785 nm for SERS.

View Article and Find Full Text PDF

Nanostructures have been multiplying the advantages of Raman spectroscopy and further amplify the advantages of Raman spectroscopy is a continuous effort focused on the appropriate design of nanostructures. Herein, we designed different shapes of plasmonic nanostructures such as Vertical, Zig Zag, Slant nanorods and Spherical nanoparticles employing the DC magnetron sputtering system as SERS-active substrates for ultrasensitive detection of target molecules. The fabricated plasmonic nanostructures sensitivity and uniformity were exploited by reference dye analyte.

View Article and Find Full Text PDF

In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate.

View Article and Find Full Text PDF

The affordable surface-enhanced Raman scattering (SERS) substrates, with a structure consisting of densely distributed round-shape silver nanoclusters on anodic aluminum oxide (AAO) template, is fabricated by magnetron sputtering and anodization processes. The physical investigations show that the silver nanoclusters with size distribution ranging from 10 to 30 nm uniformly distributed on the top and in the bottom of the AAO nanochannels. The SERS activities from adsorbed probe molecules, i.

View Article and Find Full Text PDF

Cardiac troponin T (cTnT) detection has been the focus of increased interest due to its role in myocardial infarction diagnosis. In this study, we report a relatively low coat technique to detect cTnT using a quartz crystal microbalance (QCM) sensor. A sensitive detection is achieved by introducing a QCM surface with a carboxylic polyvinyl chloride immobilization layer.

View Article and Find Full Text PDF