Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups.
View Article and Find Full Text PDFExcitonically coupled bacteriochlorin (BC) dimers constitute a primary electron donor (special pair) in bacterial photosynthesis and absorbing units in light-harvesting antenna. However, the exact nature of the excited state of these dyads is still not fully understood. Here, we report a detailed spectroscopic and computational investigation of a series of symmetrical bacteriochlorin dimers, where the bacteriochlorins are connected either directly or by a phenylene bridge of variable length.
View Article and Find Full Text PDFA series of a rigid meso-meso directly linked chlorin-chlorin, chlorin-bacteriochlorin, and bacteriochlorin-bacteriochlorin dyads, including free bases as well as Zn(II), Pd(II), and Cu(II) complexes, has been synthesized, and their absorption, emission, singlet oxygen (O) photosensitization, and electronic properties have been examined. Marked bathochromic shifts of the long-wavelength Q absorption band and increase in fluorescence quantum yields in dyads, in comparison to the corresponding monomers, are observed. Nonsymmetrical dyads (except bacteriochlorin-bacteriochlorin) show two distinctive Q bands, corresponding to the absorption of each dyad component.
View Article and Find Full Text PDFSymmetrical, near-infrared absorbing bacteriochlorin dyads exhibit gradual reduction of their fluorescence (intensity and lifetime) and reactive oxygen species photosensitization efficiency (ROS) with increasing solvent dielectric constant ε. For the directly linked dyad, significant reduction is observed even in solvents of moderate ε, while for the dyad containing a 1,4-phenylene linker, reduction is more parallel to an increase in solvent ε. Bacteriochlorin dyads are promising candidates for development of environmentally responsive fluorophores and ROS sensitizers.
View Article and Find Full Text PDFAchieving tunable, intense near-infrared absorption in molecular architectures with properties suitable for solar light harvesting and biomedical studies is of fundamental interest. Herein, we report the photophysical, redox, and molecular-orbital characteristics of nine hydroporphyrin dyads and associated benchmark monomers that have been designed and synthesized to attain enhanced light harvesting. Each dyad contains two identical hydroporphyrins (chlorin or bacteriochlorin) connected by a linker (ethynyl or butadiynyl) at the macrocycle β-pyrrole (3- or 13-) or meso (15-) positions.
View Article and Find Full Text PDFEnzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells.
View Article and Find Full Text PDF