Publications by authors named "Noorzaileen Eileena Zaidi"

Over the last few decades, cancer has been regarded as an independent and self sustaining progression. The earliest hallmarks of cancer comprise of sustaining proliferative signalling, avoiding growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Nonetheless, two emerging hallmarks are being described: aberrant metabolic pathways and evasion of immune destruction.

View Article and Find Full Text PDF

Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) have been identified as an important component for tumor growth, invasion, metastasis, and resistance to cancer therapies. However, tumor-associated macrophages can be harmful to the tumor depending on the tumor microenvironment and can reversibly alter their phenotypic characteristics by either antagonizing the cytotoxic activity of immune cells or enhancing anti-tumor response. The molecular actions of macrophages and their interactions with tumor cells (e.

View Article and Find Full Text PDF

The aim was to isolate cellulose nanocrystals (CNC) from commercialized oil palm empty fruit bunch cellulose nanofibre (CNF) through sulphuric acid hydrolysis and explore its safeness as a potential nanocarrier. Successful extraction of CNC was confirmed through a field emission scanning electron microscope (FESEM) and attenuated total reflection Fourier transmission infrared (ATR-FTIR) spectrometry analysis. For subsequent cellular uptake study, the spherical CNC was covalently tagged with fluorescein isothiocyanate (FITC), resulting in negative charged FITC-CNC nanospheres with a dispersity (Ð) of 0.

View Article and Find Full Text PDF