Staphylococcus argenteus is a recently described member of the Staphylococcus aureus complex (SAC) and is associated with human disease. The frequency and intensity of infections caused by are similar to those of Staphylococcus aureus. can harbor antibiotic resistance genes and a variety of virulence factors analogous to methicillin-resistant S.
View Article and Find Full Text PDFMethicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen that has been responsible for major nosocomial epidemics worldwide. For infection control programs, rapid and adequate detection of MRSA is of great importance. We developed a rapid and high-throughput molecular screening approach that consists of an overnight selective broth enrichment, followed by mecA, mecC, and S.
View Article and Find Full Text PDFInsertions in the protease (PR) region of human immunodeficiency virus (HIV) represent an interesting mechanism of antiviral resistance against HIV PR inhibitors (PIs). Here, we demonstrate the improved ability of a phosphonate-containing experimental HIV PI, GS-8374, relative to that of other PIs, to effectively inhibit patient-derived recombinant HIV strains bearing PR insertions and numerous other mutations. We correlate enzyme inhibition with the catalytic activities of corresponding recombinant PRs in vitro and provide a biochemical and structural analysis of the PR-inhibitor complex.
View Article and Find Full Text PDFBackground: Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2431V, HXB2436E+437T, HXB2437T and HXB2437V).
View Article and Find Full Text PDFBackground: HIV-HBV-coinfected individuals who need to be treated only for their HBV infection have limited therapeutic options, since most approved anti-HBV agents have a risk of selecting for drug-resistant HIV mutants. In vivo data are inconclusive as to whether telbivudine (LdT) may exert antiviral effects against HIV. Thus, we investigated in further detail the antiviral activity and the biochemical properties of LdT against HIV-1.
View Article and Find Full Text PDFBackground: Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself.
View Article and Find Full Text PDFBackground: Norovirus, Rotavirus group A, Astrovirus, Sapovirus and Adenovirus serotypes 40 and 41, are common causes of gastroenteritis. Conventional diagnosis of these causative agents is based on antigen detection and electron microscopy.
Objective: To improve the diagnostic possibilities for viral gastroenteritis, two internally controlled multiplex real-time PCRs have been developed.
HIV protease plays a crucial role in the viral life cycle and is essential for the generation of mature infectious virus particles. Detailed knowledge of the structure of HIV protease and its substrate has led to the design of specific HIV protease inhibitors. Unfortunately, resistance to all protease inhibitors (PIs) has been observed and the genetic basis of resistance has been well documented over the past 15 years.
View Article and Find Full Text PDFPurpose Of Review: Several alternative mechanisms that cause protease inhibitor resistance have been proposed. A summary of the proposed mechanisms and the status regarding their clinical relevance is given.
Recent Findings: At this moment only changes in the cleavage sites of protease (either alone or in the background of protease mutations) have been associated with phenotypic changes in IC50 and virological failure.
While the selection of amino acid insertions in human immunodeficiency virus (HIV) reverse transcriptase (RT) is a known mechanism of resistance against RT inhibitors, very few reports on the selection of insertions in the protease (PR) coding region have been published. It is still unclear whether these insertions impact protease inhibitor (PI) resistance and/or viral replication capacity. We show that the prevalence of insertions, especially between amino acids 30 to 41 of HIV type 1 (HIV-1) PR, has increased in recent years.
View Article and Find Full Text PDFPurpose Of Review: This review focuses on the evolution of protease inhibitor resistance and replication capacity in the presence and absence of protease inhibitor pressure.
Recent Findings: Classically, HIV escapes through mutations in the protease itself causing a decrease in affinity to the inhibitor, leading to resistance. These changes also affect the binding of the enzyme to the natural substrate, and as a consequence cause a decrease in replication capacity of the virus.
Background: HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants.
View Article and Find Full Text PDFObjective: To investigate the mechanism explaining the persistence of human immunodeficiency virus (HIV) type 1 variants with multiple protease inhibitor (PI)-resistance mutations in the absence of PI therapy.
Methods: Longitudinal genotypic analyses were performed on sequential samples obtained from 2 HIV-1-infected patients who had stopped PI therapy for 4 years. Replication capacity (RC) was determined using recombinant viruses.
Little is known about the factors which drive the evolution of protease inhibitor-resistant human immunodeficiency virus type-1 in the absence of drugs. To examine if viral replicative capacity (RC) is an important determinant, we performed in vitro evolution experiments in the absence of drugs with a unique panel of 6 drug-resistant human immunodeficiency virus type-1 recombinant protease variants with a range of different RC. The experiments revealed that an increase in viral RC was indeed an important determinant of evolution.
View Article and Find Full Text PDFThe C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm.
View Article and Find Full Text PDF