Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. However, the exact mechanisms leading to COPD and its progression are still poorly understood. In this study, induced sputum was analyzed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry to identify proteins involved in COPD pathogenesis.
View Article and Find Full Text PDFBackground: A significant number of young people start smoking at an age of 13-15, which means that serious smoking-evoked changes may have been occurred by their twenties. Surfactant proteins (SP) and matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been linked to cigarette smoke induced lung remodelling and chronic obstructive pulmonary disease (COPD). However, the level of these proteins has not been examined during ageing or in young individuals with short smoking histories.
View Article and Find Full Text PDFBackground: Smoking cessation is the best possible way to prevent the progression of smoking related airway diseases. However, the effect and time scale of smoking cessation on airway inflammation/remodelling are largely unknown. This prospective study evaluated the effects of smoking cessation on induced sputum (IS) neutrophils, matrix metalloproteinases (MMP-7, -8, -9) and tissue inhibitor of metalloproteinase-1 (TIMP-1).
View Article and Find Full Text PDFBackground: Oxidative stress is associated with the pathogenesis of cigarette smoke related lung diseases, but longitudinal effects of smoking cessation on oxidant markers in the airways are unknown.
Methods: This study included 61 smokers; 21 with chronic bronchitis or COPD, 15 asthmatics and 25 asymptomatic smokers followed up for 3 months after smoking cessation. Fractional exhaled nitric oxide (FeNO), sputum neutrophil counts, sputum 8-isoprostane, nitrotyrosine and matrix metalloproteinase-8 (MMP-8) were investigated at baseline and 1 and 3 months after smoking cessation.
Background: Exhaled nitric oxide and induced sputum eosinophils are well established as direct markers of inflammation/oxidative stress in asthma. Recently, it has been proposed that sputum 8-isoprostane concentrations may present a reliable index for measuring oxidative stress in asthmatic patients. We assessed the value of sputum 8-isoprostane in mild asthma in children and adolescents.
View Article and Find Full Text PDFThe pathogenesis of asthma and chronic obstructive pulmonary disease (COPD) has been claimed to be attributable to increased systemic and local oxidative stress. Detection of the oxidant burden and evaluation of their progression and phenotypes by oxidant biomarkers have proved challenging and difficult. A large number of asthmatics are cigarette smokers and smoke itself contains oxidants complicating further the use of oxidant biomarkers.
View Article and Find Full Text PDF