Int J Biol Macromol
November 2024
This study investigates the multifunctional bioactivities of pepsin-hydrolyzed jellyfish by-products (Rhopilema hispidum and Lobonema smithii), focusing on their anti-α-glucosidase activity, anti-inflammatory effects, anti-bacterial properties, and ability to inhibit biofilm formation of Staphylococcus aureus. Our findings revealed that jellyfish protein hydrolysates, particularly from Rhopilema hispidum, exhibit significant anti-α-glucosidase activity, surpassing the well-known α-glucosidase inhibitor Acarbose. Furthermore, we demonstrated the anti-inflammatory capabilities of these hydrolysates in suppressing lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophage cells.
View Article and Find Full Text PDFThe marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria.
View Article and Find Full Text PDFDextran, a renewable hydrophilic polysaccharide, is nontoxic, highly stable but intrinsically biodegradable. The α-1, 6 glycosidic bonds in dextran are attacked by dextranase (E.C.
View Article and Find Full Text PDFLignocellulose, the main component of plant cell walls, comprises polyaromatic lignin and fermentable materials, cellulose and hemicellulose. It is a plentiful and renewable feedstock for chemicals and energy. It can serve as a raw material for the production of various value-added products, including cellulase and xylanase.
View Article and Find Full Text PDFThe cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2021
Deamination of L-glutamine to glutamic acid with the concomitant release of ammonia by the activity of L-glutaminase (L-glutamine amidohydrolase EC 3.5.1.
View Article and Find Full Text PDFThe marine ecosystem has been known to be a significant source of novel enzymes. Esterase enzymes (EC 3.1.
View Article and Find Full Text PDFMarine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2020
Marine-derived enzymes have recently gained attention particularly for industrial applications. Cellulose-degrading enzymes are among leading biocatalysts with potential utility in biorefineries. This review presents an account of the cellulase production by marine sources from microorganisms including bacteria, yeasts, and molds to marine invertebrates such as protist, rotifer, mollusks, arthropods, and echinoderms.
View Article and Find Full Text PDFInt J Biol Macromol
October 2020
With the modern world focusing on environmental friendly products, more and more chemical processes are being replaced by enzymatic methods. Alkaline proteases (APases) place more than 50% of the total world enzyme production. Marine microorganisms are capable of producing an extensive spectrum of APases which have important ecological roles and promising industrial applications.
View Article and Find Full Text PDFMarine organisms produce a large array of natural products with relevance in drug discovery. These compounds have biological activities such as antioxidant, antibacterial, antitumor, antivirus, anticoagulant, anti-inflammatory, antihypertensive, antidiabetic, and so forth. Consequently, several of the metabolites have made it to the advanced stages of clinical trials, and a few of them are commercially available.
View Article and Find Full Text PDFInt J Biol Macromol
December 2018
Chitin is the richest renewable polymer carbohydrate in the marine environment and is an energetic source of nitrogen and carbon for marine organisms. Marine chitinolytic bacteria play a basic role in the nutrient cycling in the oceans by biodegradation of chitinous waste to useful form. Chitinase-producing bacteria from marine wastes increasing attention has received, and it serves two purposes: (i) reduce environmental hazards by waste management and (ii) increases generation of industrially important value-added products.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2018
The marine ecosystem has been known to be a rich source of novel enzymes. Agarase is a key enzyme that can hydrolyze agar in the marine environment. Marine bacterial agarase has been isolated from various sources, such as sediments, coastal water, and deep sea and from the surface of crustaceans and seaweeds.
View Article and Find Full Text PDFThermostable proteases are important in biotechnological and industrial sectors, due to their stability against denaturing agents and chemicals. The feature that gives them such unique applicability is their reaction at high temperatures, which affords a high concentration of substrate, and less risk of microbial contamination. Nearly 65% of industrial proteases are isolated from marine microbial source, and they can significantly resist a wide range of organic solvents at high temperatures.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2017
The proximate composition and mineral contents of Stichopus horrens and Holothuria arenicola from Chabahar Bay were analyzed and investigated. During the present study, we aimed to demonstrate the nutritive value. The approximate percent composition of moisture, protein, fat, and ash were 92.
View Article and Find Full Text PDF