Ionizing radiation acoustic imaging (iRAI) allows online monitoring of radiation's interactions with tissues during radiation therapy, providing real-time, adaptive feedback for cancer treatments. We describe an iRAI volumetric imaging system that enables mapping of the three-dimensional (3D) radiation dose distribution in a complex clinical radiotherapy treatment. The method relies on a two-dimensional matrix array transducer and a matching multi-channel preamplifier board.
View Article and Find Full Text PDFPurpose: Electron-based ultra-high dose rate radiation therapy (UHDR-RT), also known as Flash-RT, has shown the ability to improve the therapeutic index in comparison to conventional radiotherapy (CONV-RT) through increased sparing of normal tissue. However, the extremely high dose rates in UHDR-RT have raised the need for accurate real-time dosimetry tools. This work aims to demonstrate the potential of the emerging technology of Ionized Radiation Acoustic Imaging (iRAI) through simulation studies and investigate its characteristics as a promising relative in vivo dosimetric tool for UHDR-RT.
View Article and Find Full Text PDFThe outbreak of the novel coronavirus disease, COVID-19 turned into a global pandemic in March 2020. During these unprecedented times, there is an increased demand in medical and personal protective equipment (PPE). Since the supplies may take a long time to meet the global demand, reusing PPEs will help health care workers in their response to the COVID-19 pandemic.
View Article and Find Full Text PDFPurpose: To develop and implement an efficient and accurate commissioning procedure for small-field static beam animal irradiation studies on an MV research linear accelerator (Linatron-M9) using radiochromic gel dosimetry.
Materials: The research linear accelerator (Linatron-M9) is a 9 MV linac with a static fixed collimator opening of 5.08 cm diameter.
Purpose: FLASH radiotherapy (FLASH-RT) is a novel irradiation modality with ultra-high dose rates (>40 Gy/s) that have shown tremendous promise for its ability to enhance normal tissue sparing while maintaining comparable tumor cell eradication toconventional radiotherapy (CONV-RT). Due to its extremely high dose rates, clinical translation of FLASH-RT is hampered by risky delivery and current limitations in dosimetric devices, which cannot accurately measure, in real time, dose at deeper tissue. This work aims to investigate ionizing radiation acoustic imaging (iRAI) as a promising image-guidance modality for real-time deep tissue dose measurements during FLASH-RT.
View Article and Find Full Text PDF