Purpose: Recent studies have identified an effect of glycosaminoglycans (GAG) on residual stresses in the aorta, underscoring the need to better understand their biomechanical roles.
Methods: Aortic ring models for each of the ascending, arch and descending thoracic regions of the porcine thoracic aorta were created in FEBioStudio, using a framework that incorporates the Donnan osmotic swelling in a porous solid matrix. The distribution of fixed charge densities (FCD) through the thickness of the tissue was prescribed as calculated from experimentally quantified sulfated GAG mural distributions.
The mechanical properties of the aorta are influenced by the extracellular matrix, a network mainly comprised of fibers and glycosaminoglycans (GAG). In this work, we demonstrate that GAG contribute to the opening angle (a marker of circumferential residual stresses) in intact and glycated aortic tissue. Enzymatic GAG depletion was associated with a decrease in the opening angle, by approximately 25% (p = 0.
View Article and Find Full Text PDFThe heterogeneity and contribution of collagen and elastin to residual stresses have been thoroughly studied, but more recently, glycosaminoglycans (GAGs) also emerged as potential regulators. In this study, the opening angle of aortic rings (an indicator of circumferential residual stresses) and the mural distributions of sulfated GAGs (sGAG), collagen, and elastin were quantified in the ascending, aortic arch and descending thoracic regions of 5- to 6-month-old pigs. The opening angle correlated positively with the aortic ring's mean radius and thickness, with good and moderate correlations respectively.
View Article and Find Full Text PDFWhile elastin and collagen have received a lot of attention as major contributors to aortic biomechanics, glycosaminoglycans (GAGs) and proteoglycans (PGs) recently emerged as additional key players whose roles must be better elucidated if one hopes to predict aortic ruptures caused by aneurysms and dissections more reliably. GAGs are highly negatively charged polysaccharide molecules that exist in the extracellular matrix (ECM) of the arterial wall. In this critical review, we summarize the current understanding of the contributions of GAGs/PGs to the biomechanics of the normal aortic wall, as well as in the case of aortic diseases such as aneurysms and dissections.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
In this computational modelling work, we explored the mechanical roles that various glycosaminoglycans (GAGs) distributions may play in the porcine ascending aortic wall, by studying both the transmural residual stress as well as the opening angle in aortic ring samples. A finite element (FE) model was first constructed and validated against published data generated from rodent aortic rings. The FE model was then used to simulate the response of porcine ascending aortic rings with different GAG distributions prescribed through the wall of the aorta.
View Article and Find Full Text PDF