Gold nanoparticles (AuNPs) have emerged as a promising application in aquaculture. Their nano-sized dimensions, comparable to pathogens offer potential solutions for combating antibiotic resistance. In this study, AuNPs were synthesized by using polychaetes, as the bio-reducing agent.
View Article and Find Full Text PDFCurrently, efforts to address the energy needs of large-scale power applications have expedited the development of sodium-ion (Na-ion) batteries. Transition-metal oxides, including MnO, are promising for low-cost, eco-friendly energy storage/conversion. Due to its high theoretical capacity, MnO is worth exploring as an anode material for Na-ion batteries; however, its actual application is constrained by low electrical conductivity and capacity fading.
View Article and Find Full Text PDFOwing to their high theoretical capacity, transition-metal oxides have received a considerable amount of attention as potential anode materials in sodium-ion (Na-ion) batteries. Among them, MnO has gained interest due to the low cost of raw materials and the environmental compatibility. However, during the insertion/de-insertion process, MnO suffers from particle aggregation, poor conductivity, and low-rate capability, which, in turn, limits its practical application.
View Article and Find Full Text PDFAntibiotics are regarded as a miracle in the medical field as it prevents disease caused by pathogenic bacteria. Since the discovery of penicillin, antibiotics have become the foundation for modern medical discoveries. However, bacteria soon became resistant to antibiotics, which puts a burden on the healthcare system.
View Article and Find Full Text PDFThe non-hazardous silver nanoparticles (AgNPs) synthesised using the extract of a biological organism has gained widespread attention for various applications, mainly in healthcare. This study aimed at synthesising AgNPs using the aqueous extract of (Annelida, Polychaeta) and to evaluate their antibacterial activities. AgNPs were synthesised in response to silver nitrate (AgNO) with polychaete crude extract for 24 h incubation; the polychaete crude extract acted as both reducing and stabilising agents.
View Article and Find Full Text PDFMnO is considered to be a promising anode material for sodium-ion batteries (SIBs) because of its low cost, high capacity, and enhanced safety. However, the inferior cyclic stability of the MnO anode is a major challenge for the development of SIBs. In this study, a one-step solvothermal method was established to produce nanostructured MnO with an average particle size of 21 nm and a crystal size of 11 nm.
View Article and Find Full Text PDFCurrently, the development of the sodium-ion (Na-ion) batteries as an alternative to lithium-ion batteries has been accelerated to meet the energy demands of large-scale power applications. The difficulty of obtaining suitable electrode materials capable of storing large amount of Na-ion arises from the large radius of Na-ion that restricts its reversible capacity. Herein, MnO powders are synthesised through the thermal conversion of MnCO and reported for the first time as an anode for Na-ion batteries.
View Article and Find Full Text PDFWe report an approach to enhance simultaneously luminescence and SERS signals with a single excitation wavelength by co-encapsulating silicon quantum dots and Au-Ag alloy nanoparticles encoded with Raman reporter molecules inside polymeric nanoparticles. The SERS-luminescence enhancement exploits the large Stokes shift of silicon quantum dots, which allows 'room' for the display of a Raman spectrum.
View Article and Find Full Text PDFThe preparation of two-component polymer composite nanoparticles encapsulating both Si quantum dots (SiQDs) and Au nanoparticles (AuNPs) by a single step miniemulsion polymerization of divinylbenzene is described. This simple and robust method affords well-defined polymer composite nanoparticles with mean diameters in a range of 100-200 nm and with narrow polydispersity indices as determined by dynamic light scattering and transmission electron microscopy. The successful encapsulation of AuNPs within poly(divinylbenzene) was confirmed by UV-visible spectroscopy and from TEM images.
View Article and Find Full Text PDFMiniemulsion polymerization techniques were used to encapsulate luminescent alkylated silicon quantum dots (Si-QDs) within polymer nanoparticles composed of styrene and 4-vinylbenzaldehyde monomers. The polymer nanoparticles had mean diameters in the range 90-150 nm depending on the reaction conditions, however all samples showed narrow particle size distributions, as determined by dynamic light scattering and atomic force microscopy. The Si-QDs were found to have a small, but beneficial effect on the polymerization process by reducing the polydispersity of the final polymer particles, which we attribute to co-surfactant action of the undecene used to form the alkyl capping layer on the Si-QDs.
View Article and Find Full Text PDF