Background: Consumption of tomatoes and tomato carotenoids is associated with a reduced risk of prostate cancer. Prostate tissue accumulates tomato carotenoids, including lycopene, β-carotene, and phytoene. Phytoene accumulation is relatively greater in the prostate than that of lycopene, but the metabolic determinants of tissue carotenoid profiles are poorly understood.
View Article and Find Full Text PDFBackground: Epidemiologic studies suggest lycopene and tomato intake are inversely associated with human prostate cancer incidence. In the genetically driven murine prostate carcinogenesis model transgenic adenocarcinoma of the mouse prostate (TRAMP), prostate cancer is inhibited by feeding of lycopene or tomatoes, and these effects are modulated by the β-carotene oxygenase 2 (Bco2) genotype.
Objective: We sought insight into this interaction through evaluation of prostate gene expression patterns during early TRAMP carcinogenesis.