Publications by authors named "Nono Takeuchi-Tomita"

The antibiotics chloramphenicol (CHL) and oxazolidinones including linezolid (LZD) are known to inhibit mitochondrial translation. This can result in serious, potentially deadly, side effects when used therapeutically. Although the mechanism by which CHL and LZD inhibit bacterial ribosomes has been elucidated in detail, their mechanism of action against mitochondrial ribosomes has yet to be explored.

View Article and Find Full Text PDF

Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. Here, we describe the in vitro reconstitution of the mammalian mitochondrial translation system, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a heterologous yeast tRNA mixture. The system is capable of translating leaderless mRNAs encoding model proteins, such as nanoluciferase with a molecular weight of 19 kDa, and is readily applicable for in vitro evaluations of mRNAs and nascent peptide chain sequences, as well as factors and small molecules that affect mitochondrial translation.

View Article and Find Full Text PDF

The rates of translation elongation or termination in eukaryotes are modulated through cooperative molecular interactions involving mRNA, the ribosome, aminoacyl- and nascent polypeptidyl-tRNAs, and translation factors. To investigate the molecular mechanisms underlying these processes, we developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors, utilizing CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing not only short oligopeptides but also long reporter proteins such as nanoluciferase.

View Article and Find Full Text PDF

Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins.

View Article and Find Full Text PDF

We have recently developed an in vitro yeast reconstituted translation system, which is capable of synthesizing long polypeptides. Utilizing the system, we examined the role of eIF5A and its hypusine modification in translating polyproline sequence within long open reading frames. We found that polyproline motif inserted at the internal position of the protein arrests translation exclusively at low Mg2+ concentrations, and peptidylpolyproline-tRNA intrinsically destabilizes 80S ribosomes.

View Article and Find Full Text PDF

We developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors and programmed by CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing the active reporter protein, nanoLuciferase, with a molecular weight of 19 kDa. The protein synthesis by the system is appropriately regulated by controlling its composition, including translation factors, amino acids and antibiotics.

View Article and Find Full Text PDF

The stress-related protein Stm1 interacts with ribosomes, and is implicated in repressing translation. Stm1 was previously studied both in vivo and in vitro by cell-free translation systems using crude yeast lysates, but its precise functional mechanism remains obscure. Using an in vitro reconstituted translation system, we now show that Stm1 severely inhibits translation through its N-terminal region, aa 1 to 107, and this inhibition is antagonized by eEF3.

View Article and Find Full Text PDF