Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.
View Article and Find Full Text PDFThe Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5 cm×5 cm×5 cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter.
View Article and Find Full Text PDFWe report on the results obtained with the global CUPID-0 background model, which combines the data collected in the two measurement campaigns for a total exposure of 8.82 kg×yr of ^{82}Se. We identify with improved precision the background sources within the 3 MeV energy region, where neutrinoless double β decay of ^{82}Se and ^{100}Mo is expected, making more solid the foundations for the background budget of the next-generation CUPID experiment.
View Article and Find Full Text PDFNeutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.
View Article and Find Full Text PDFWe report on the development of scintillating bolometers based on lithium molybdate crystals that contain molybdenum that has depleted into the double-β active isotope 100Mo (Li2100deplMoO4). We used two Li2100deplMoO4 cubic samples, each of which consisted of 45-millimeter sides and had a mass of 0.28 kg; these samples were produced following the purification and crystallization protocols developed for double-β search experiments with 100Mo-enriched Li2MoO4 crystals.
View Article and Find Full Text PDFCoherent elastic neutrino-nucleus scattering and low-mass dark matter detectors rely crucially on the understanding of their response to nuclear recoils. We report the first observation of a nuclear recoil peak at around 112 eV induced by neutron capture. The measurement was performed with a CaWO_{4} cryogenic detector from the NUCLEUS experiment exposed to a ^{252}Cf source placed in a compact moderator.
View Article and Find Full Text PDFNeutrinoless double beta decay (0νββ) processes sample a wide range of intermediate forbidden nuclear transitions, which may be impacted by quenching of the axial vector coupling constant (g_{A}/g_{V}), the uncertainty of which plays a pivotal role in determining the sensitivity reach of 0νββ experiments. In this Letter, we present measurements performed on a high-resolution LiInSe_{2} bolometer in a "source=detector" configuration to measure the spectral shape of the fourfold forbidden β decay of ^{115}In. The value of g_{A}/g_{V} is determined by comparing the spectral shape of theoretical predictions to the experimental β spectrum taking into account various simulated background components as well as a variety of detector effects.
View Article and Find Full Text PDFThe Cryogenic Underground Observatory for Rare Events (CUORE) at Laboratori Nazionali del Gran Sasso of INFN in Italy is an experiment searching for neutrinoless double beta (0νββ) decay. Its main goal is to investigate this decay in ^{130}Te, but its ton-scale mass and low background make CUORE sensitive to other rare processes as well. In this Letter, we present our first results on the search for 0νββ decay of ^{128}Te, the Te isotope with the second highest natural isotopic abundance.
View Article and Find Full Text PDFPhys Rev Lett
September 2022
CUPID-0, an array of Zn^{82}Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers' technology. The first project phase (March 2017-December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, ^{82}Se, to be set. After a six month long detector upgrade, CUPID-0 began its second and last phase (June 2019-February 2020).
View Article and Find Full Text PDFEur Phys J C Part Fields
August 2021
Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of delayed coincidences in Th and U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment.
View Article and Find Full Text PDFThe CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νββ experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νββ decay in ^{100}Mo.
View Article and Find Full Text PDFWe measured two-neutrino double beta decay of ^{130}Te using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution.
View Article and Find Full Text PDFWe present the first Ge-based constraints on sub-MeV/c^{2} dark matter (DM) particles interacting with electrons using a 33.4 g Ge cryogenic detector with a 0.53 electron-hole pair (rms) resolution, operated underground at the Laboratoire Souterrain de Modane.
View Article and Find Full Text PDFWe report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.
View Article and Find Full Text PDFWe report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.
View Article and Find Full Text PDFIt has been proposed that neurotrophin-3 acts in a manner that is opposed to nerve growth factor, especially in the modulation of heat hyperalgesia. Injury to the constriction of the infraorbital nerve (CION) is a well-established model of trigeminal neuropathic pain that leads to robust heat, cold, and mechanical hyperalgesia. Here, we assessed the effect of local neurotrophin-3 treatment on CION-induced hyperalgesia, and we examined some mechanisms related to the effect of neurotrophin-3.
View Article and Find Full Text PDFCUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0νDBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a ^{82}Se exposure of 5.29 kg×yr.
View Article and Find Full Text PDFWe report the result of the search for neutrinoless double beta decay of ^{82}Se obtained with CUPID-0, the first large array of scintillating Zn^{82}Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr ^{82}Se exposure, and we set the most stringent lower limit on the 0νββ ^{82}Se half-life T_{1/2}^{0ν}>2.
View Article and Find Full Text PDFJ Oral Facial Pain Headache
November 2018
Aims: To assess the analgesic effect of intranasal administration of S-ketamine in different rat models of facial pain.
Methods: Nociceptive responses induced by formalin injected into the upper lip and facial hyperalgesia induced by capsaicin or carrageenan injected into the upper lip were used to evaluate the analgesic effect of intranasal ketamine in acute facial pain models in rats (n = 173). The effect of intranasal ketamine on heat and mechanical hyperalgesia induced by constriction of the infraorbital nerve (CION) was also evaluated.
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.
View Article and Find Full Text PDFEur Phys J C Part Fields
May 2018
The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of Se neutrinoless double-beta decay ( ). CUPID-0 aims at measuring a background index in the region of interest (RoI) for at the level of 10 counts/(keV kg years), the lowest value ever measured using cryogenic detectors. CUPID-0 operates an array of Zn Se scintillating bolometers coupled with bolometric light detectors, with a state of the art technology for background suppression and thorough protocols and procedures for the detector preparation and construction.
View Article and Find Full Text PDFEur Phys J C Part Fields
November 2018
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95 enriched in Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of Se into the 0 , 2 and 2 excited states of Kr with an exposure of 5.
View Article and Find Full Text PDFEur Phys J C Part Fields
September 2018
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn Se scintillating calorimeters, is the first large mass demonstrator of this technology.
View Article and Find Full Text PDFObjective: Pronociceptive responses to endothelins in the trigeminal system seem to be mediated by ET and ET receptors, which have been shown to be expressed in neurons of the trigeminal ganglion of humans and rats. The present study aimed to evaluate the ability of endothelin-1 (ET-1) to induce facial heat hyperalgesia in female rats, the contribution of ET and ET receptors to this response, as well as the mechanisms underlying heat hyperalgesia induced by ET-1.
Design: ET-1 (100pmol/50μL) was injected into the upper lip and heat hyperalgesia was evaluated for up to 6h.